BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20686359)

  • 41. The role of p53 in the response to mitotic spindle damage.
    Meek DW
    Pathol Biol (Paris); 2000 Apr; 48(3):246-54. PubMed ID: 10858957
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Involvement of centrosome amplification in radiation-induced mitotic catastrophe.
    Dodson H; Wheatley SP; Morrison CG
    Cell Cycle; 2007 Feb; 6(3):364-70. PubMed ID: 17297293
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Critical role of the nucleolus in activation of the p53-dependent postmitotic checkpoint.
    Tsuchiya M; Katagiri N; Kuroda T; Kishimoto H; Nishimura K; Kumazawa T; Iwasaki N; Kimura K; Yanagisawa J
    Biochem Biophys Res Commun; 2011 Apr; 407(2):378-82. PubMed ID: 21396915
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage.
    Minn AJ; Boise LH; Thompson CB
    Genes Dev; 1996 Oct; 10(20):2621-31. PubMed ID: 8895663
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inactivation of DNA-dependent protein kinase leads to spindle disruption and mitotic catastrophe with attenuated checkpoint protein 2 Phosphorylation in response to DNA damage.
    Shang ZF; Huang B; Xu QZ; Zhang SM; Fan R; Liu XD; Wang Y; Zhou PK
    Cancer Res; 2010 May; 70(9):3657-66. PubMed ID: 20406977
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gain of function properties of mutant p53 proteins at the mitotic spindle cell cycle checkpoint.
    Hixon ML; Flores A; Wagner M; Gualberto A
    Histol Histopathol; 2000 Apr; 15(2):551-6. PubMed ID: 10809376
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MAPK14/p38α confers irinotecan resistance to TP53-defective cells by inducing survival autophagy.
    Paillas S; Causse A; Marzi L; de Medina P; Poirot M; Denis V; Vezzio-Vie N; Espert L; Arzouk H; Coquelle A; Martineau P; Del Rio M; Pattingre S; Gongora C
    Autophagy; 2012 Jul; 8(7):1098-112. PubMed ID: 22647487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. C-myc overexpression and p53 loss cooperate to promote genomic instability.
    Yin XY; Grove L; Datta NS; Long MW; Prochownik EV
    Oncogene; 1999 Feb; 18(5):1177-84. PubMed ID: 10022123
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Induction of C-anaphase and diplochromosome through dysregulation of spindle assembly checkpoint by sodium arsenite in human fibroblasts.
    Yih LH; Lee TC
    Cancer Res; 2003 Oct; 63(20):6680-8. PubMed ID: 14583462
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Centrosome aberrations associated with cellular senescence and p53 localization at supernumerary centrosomes.
    Ohshima S
    Oxid Med Cell Longev; 2012; 2012():217594. PubMed ID: 23091651
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The requirement of p53 for maintaining chromosomal stability during tetraploidization.
    Ho CC; Hau PM; Marxer M; Poon RYC
    Oncotarget; 2010 Nov; 1(7):583-595. PubMed ID: 21317454
    [TBL] [Abstract][Full Text] [Related]  

  • 52. p53 deficiency and defective mitotic checkpoint in proliferating T lymphocytes increase chromosomal instability through aberrant exit from mitotic arrest.
    Baek KH; Shin HJ; Yoo JK; Cho JH; Choi YH; Sung YC; McKeon F; Lee CW
    J Leukoc Biol; 2003 Jun; 73(6):850-61. PubMed ID: 12773518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Failure of cell cleavage induces senescence in tetraploid primary cells.
    Panopoulos A; Pacios-Bras C; Choi J; Yenjerla M; Sussman MA; Fotedar R; Margolis RL
    Mol Biol Cell; 2014 Oct; 25(20):3105-18. PubMed ID: 25143403
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gadd45β is transcriptionally activated by p53 via p38α-mediated phosphorylation during myocardial ischemic injury.
    Kim YA; Kim MY; Yu HY; Mishra SK; Lee JH; Choi KS; Kim JH; Xiang YK; Jung YS
    J Mol Med (Berl); 2013 Nov; 91(11):1303-13. PubMed ID: 23948959
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inactivation of p53 and the development of tetraploidy in the elastase-SV40 T antigen transgenic mouse pancreas.
    Ramel S; Sanchez CA; Schimke MK; Neshat K; Cross SM; Raskind WH; Reid BJ
    Pancreas; 1995 Oct; 11(3):213-22. PubMed ID: 8577673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry.
    Zimmerman WC; Sillibourne J; Rosa J; Doxsey SJ
    Mol Biol Cell; 2004 Aug; 15(8):3642-57. PubMed ID: 15146056
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tetraploidy, aneuploidy and cancer.
    Ganem NJ; Storchova Z; Pellman D
    Curr Opin Genet Dev; 2007 Apr; 17(2):157-62. PubMed ID: 17324569
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Liver cell polyploidization: a pivotal role for binuclear hepatocytes.
    Guidotti JE; Brégerie O; Robert A; Debey P; Brechot C; Desdouets C
    J Biol Chem; 2003 May; 278(21):19095-101. PubMed ID: 12626502
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Illicit survival of cancer cells during polyploidization and depolyploidization.
    Vitale I; Galluzzi L; Senovilla L; Criollo A; Jemaà M; Castedo M; Kroemer G
    Cell Death Differ; 2011 Sep; 18(9):1403-13. PubMed ID: 21072053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gamma-actin is involved in regulating centrosome function and mitotic progression in cancer cells.
    Po'uha ST; Kavallaris M
    Cell Cycle; 2015; 14(24):3908-19. PubMed ID: 26697841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.