These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 20686594)

  • 21. Out-of-plane band structure of a two-dimensional dispersive photonic crystal.
    Valenzuela-Sau JD; García-Llamas R
    Opt Lett; 2018 May; 43(10):2360-2363. PubMed ID: 29762592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.
    Cao W; Muñoz A; Palffy-Muhoray P; Taheri B
    Nat Mater; 2002 Oct; 1(2):111-3. PubMed ID: 12618825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transmission-line model to design matching stage for light coupling into two-dimensional photonic crystals.
    Miri M; Khavasi A; Mehrany K; Rashidian B
    Opt Lett; 2010 Jan; 35(2):115-7. PubMed ID: 20081939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals.
    Kushwaha MS; Martinez G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions.
    Chern RL; Chang CC; Chang CC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036605. PubMed ID: 16605675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of the complete photonic bandgap of two-dimensional photonic crystal.
    Chau YF; Wu FL; Jiang ZH; Li HY
    Opt Express; 2011 Mar; 19(6):4862-7. PubMed ID: 21445122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.
    Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM
    Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photonic bandgap calculations with Dirichlet-to-Neumann maps.
    Yuan J; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2006 Dec; 23(12):3217-22. PubMed ID: 17106479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-chip natural assembly of silicon photonic bandgap crystals.
    Vlasov YA; Bo XZ; Sturm JC; Norris DJ
    Nature; 2001 Nov; 414(6861):289-93. PubMed ID: 11713524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maximizing band gaps in two-dimensional photonic crystals in square lattices.
    Cheng XL; Yang J
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2314-9. PubMed ID: 24322930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of Z-scan characteristics for one-dimensional nonlinear photonic bandgap materials.
    Chen S; Zang W; Schülzgen A; Liu X; Tian J; Moloney JV; Peyghambarian N
    Opt Lett; 2009 Dec; 34(23):3665-7. PubMed ID: 19953155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Q hybrid 3D-2D slab-3D photonic crystal microcavity.
    Tang L; Yoshie T
    Opt Lett; 2010 Sep; 35(18):3144-6. PubMed ID: 20847806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Band-edge lasers based on randomly mixed photonic crystals.
    Kim S; Yoon S; Seok H; Lee J; Jeon H
    Opt Express; 2010 Apr; 18(8):7685-92. PubMed ID: 20588609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical study of photonic band gaps in woodpile crystals.
    Gralak B; de Dood M; Tayeb G; Enoch S; Maystre D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066601. PubMed ID: 16241362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of photonic crystals for the visible spectrum by holographic lithography.
    Campbell M; Sharp DN; Harrison MT; Denning RG; Turberfield AJ
    Nature; 2000 Mar; 404(6773):53-6. PubMed ID: 10716437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finite element analysis of photon density of states for two-dimensional photonic crystals with in-plane light propagation.
    Lin MC; Jao RF
    Opt Express; 2007 Jan; 15(1):207-18. PubMed ID: 19532236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient computation of photonic crystal waveguide modes with dispersive material.
    Schmidt K; Kappeler R
    Opt Express; 2010 Mar; 18(7):7307-22. PubMed ID: 20389752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups.
    Maldovan M; Ullal CK; Carter WC; Thomas EL
    Nat Mater; 2003 Oct; 2(10):664-7. PubMed ID: 12970758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectral element method for band structures of two-dimensional anisotropic photonic crystals.
    Luo M; Liu QH; Li Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026705. PubMed ID: 19391872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.