These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 20686707)

  • 1. A genome-wide analysis reveals no nuclear dobzhansky-muller pairs of determinants of speciation between S. cerevisiae and S. paradoxus, but suggests more complex incompatibilities.
    Kao KC; Schwartz K; Sherlock G
    PLoS Genet; 2010 Jul; 6(7):e1001038. PubMed ID: 20686707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward genome-wide identification of Bateson-Dobzhansky-Muller incompatibilities in yeast: a simulation study.
    Li C; Wang Z; Zhang J
    Genome Biol Evol; 2013; 5(7):1261-72. PubMed ID: 23742870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering evolution to study speciation in yeasts.
    Delneri D; Colson I; Grammenoudi S; Roberts IN; Louis EJ; Oliver SG
    Nature; 2003 Mar; 422(6927):68-72. PubMed ID: 12621434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species.
    Lee HY; Chou JY; Cheong L; Chang NH; Yang SY; Leu JY
    Cell; 2008 Dec; 135(6):1065-73. PubMed ID: 19070577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prezygotic reproductive isolation between Saccharomyces cerevisiae and Saccharomyces paradoxus.
    Maclean CJ; Greig D
    BMC Evol Biol; 2008 Jan; 8():1. PubMed ID: 18179683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytonuclear incompatibility contributes to the early stages of speciation.
    Barnard-Kubow KB; So N; Galloway LF
    Evolution; 2016 Dec; 70(12):2752-2766. PubMed ID: 27677969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A screen for recessive speciation genes expressed in the gametes of F1 hybrid yeast.
    Greig D
    PLoS Genet; 2007 Feb; 3(2):e21. PubMed ID: 17305429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide investigation of reproductive isolation in experimental lineages and natural species of Neurospora: identifying candidate regions by microarray-based genotyping and mapping.
    Dettman JR; Anderson JB; Kohn LM
    Evolution; 2010 Mar; 64(3):694-709. PubMed ID: 19817850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for Dobzhansky-Muller incompatibilites contributing to the sterility of hybrids between Mimulus guttatus and M. nasutus.
    Fishman L; Willis JH
    Evolution; 2001 Oct; 55(10):1932-42. PubMed ID: 11761055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradual genome stabilisation by progressive reduction of the Saccharomyces uvarum genome in an interspecific hybrid with Saccharomyces cerevisiae.
    Antunovics Z; Nguyen HV; Gaillardin C; Sipiczki M
    FEMS Yeast Res; 2005 Dec; 5(12):1141-50. PubMed ID: 15982931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of hybrid incompatibilities along a phylogeny.
    Wang RJ; Ané C; Payseur BA
    Evolution; 2013 Oct; 67(10):2905-22. PubMed ID: 24094342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geographical variation in postzygotic isolation and its genetic basis within and between two Mimulus species.
    Martin NH; Willis JH
    Philos Trans R Soc Lond B Biol Sci; 2010 Aug; 365(1552):2469-78. PubMed ID: 20643736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence diversity, reproductive isolation and species concepts in Saccharomyces.
    Liti G; Barton DB; Louis EJ
    Genetics; 2006 Oct; 174(2):839-50. PubMed ID: 16951060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signatures of reproductive isolation in patterns of single nucleotide diversity across inbred strains of mice.
    Payseur BA; Hoekstra HE
    Genetics; 2005 Dec; 171(4):1905-16. PubMed ID: 16143616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteotoxicity caused by perturbed protein complexes underlies hybrid incompatibility in yeast.
    Swamy KBS; Lee HY; Ladra C; Liu CJ; Chao JC; Chen YY; Leu JY
    Nat Commun; 2022 Jul; 13(1):4394. PubMed ID: 35906261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproductive isolation in Saccharomyces.
    Greig D
    Heredity (Edinb); 2009 Jan; 102(1):39-44. PubMed ID: 18648383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities.
    Fishman L; Sweigart AL
    Annu Rev Plant Biol; 2018 Apr; 69():707-731. PubMed ID: 29505737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Architecture Underlying Nascent Speciation-The Evolution of Eurasian Pigs under Domestication.
    Xie HB; Wang LG; Fan CY; Zhang LC; Adeola AC; Yin X; Zeng ZB; Wang LX; Zhang YP
    Mol Biol Evol; 2021 Aug; 38(9):3556-3566. PubMed ID: 33892509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interspecies hybridization and recombination in Saccharomyces wine yeasts.
    Sipiczki M
    FEMS Yeast Res; 2008 Nov; 8(7):996-1007. PubMed ID: 18355270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species.
    Peris D; Arias A; Orlić S; Belloch C; Pérez-Través L; Querol A; Barrio E
    Mol Phylogenet Evol; 2017 Mar; 108():49-60. PubMed ID: 28189617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.