BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20686757)

  • 1. Functional diversification and evolution of antifreeze proteins in the antarctic fish Lycodichthys dearborni.
    Kelley JL; Aagaard JE; MacCoss MJ; Swanson WJ
    J Mol Evol; 2010 Aug; 71(2):111-8. PubMed ID: 20686757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Characterization of a multimer type III antifreeze protein gene from the Antarctic eel pout (Lycodichthys dearborni)].
    Yu J; Cheng CH; DeVries AL; Chen LB
    Yi Chuan Xue Bao; 2005 Aug; 32(8):789-94. PubMed ID: 16231732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifreeze peptide heterogeneity in an antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem.
    Wang X; DeVries AL; Cheng CH
    Biochim Biophys Acta; 1995 Mar; 1247(2):163-72. PubMed ID: 7696304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of antifreeze proteins from the antarctic marine microalga Pyramimonas gelidicola.
    Jung W; Gwak Y; Davies PL; Kim HJ; Jin E
    Mar Biotechnol (NY); 2014 Oct; 16(5):502-12. PubMed ID: 24609978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic basis for antifreeze peptide heterogeneity and abundance in an Antarctic eel pout: gene structures and organization.
    Wang X; DeVries AL; Cheng CH
    Mol Mar Biol Biotechnol; 1995 Jun; 4(2):135-47. PubMed ID: 7773331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile.
    Gwak IG; Jung WS; Kim HJ; Kang SH; Jin E
    Mar Biotechnol (NY); 2010 Nov; 12(6):630-9. PubMed ID: 20024694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct molecular features facilitating ice-binding mechanisms in hyperactive antifreeze proteins closely related to an Antarctic sea ice bacterium.
    Banerjee R; Chakraborti P; Bhowmick R; Mukhopadhyay S
    J Biomol Struct Dyn; 2015; 33(7):1424-41. PubMed ID: 25190099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function relationships in spruce budworm antifreeze protein revealed by isoform diversity.
    Doucet D; Tyshenko MG; Kuiper MJ; Graether SP; Sykes BD; Daugulis AJ; Davies PL; Walker VK
    Eur J Biochem; 2000 Oct; 267(19):6082-8. PubMed ID: 10998070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive darwinian selection promotes heterogeneity among members of the antifreeze protein multigene family.
    Swanson WJ; Aquadro CF
    J Mol Evol; 2002 Mar; 54(3):403-10. PubMed ID: 11847566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifreeze protein dimer: when two ice-binding faces are better than one.
    Baardsnes J; Kuiper MJ; Davies PL
    J Biol Chem; 2003 Oct; 278(40):38942-7. PubMed ID: 12869550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifreeze proteins enable plants to survive in freezing conditions.
    Gupta R; Deswal R
    J Biosci; 2014 Dec; 39(5):931-44. PubMed ID: 25431421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an antarctic yeast protein.
    Shah SH; Kar RK; Asmawi AA; Rahman MB; Murad AM; Mahadi NM; Basri M; Rahman RN; Salleh AB; Chatterjee S; Tejo BA; Bhunia A
    PLoS One; 2012; 7(11):e49788. PubMed ID: 23209600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of hyperactive, repetitive antifreeze proteins in beetles.
    Graham LA; Qin W; Lougheed SC; Davies PL; Walker VK
    J Mol Evol; 2007 Apr; 64(4):387-98. PubMed ID: 17443386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial multimers of the type III antifreeze protein. Effects on thermal hysteresis and ice crystal morphology.
    Nishimiya Y; Ohgiya S; Tsuda S
    J Biol Chem; 2003 Aug; 278(34):32307-12. PubMed ID: 12805364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL
    Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of antifreeze peptides from the antarctic eel pout, Austrolycicthys brachycephalus.
    Cheng CH; DeVries AL
    Biochim Biophys Acta; 1989 Jul; 997(1-2):55-64. PubMed ID: 2752054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.