These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 20686926)
21. Methylglyoxal-derived modifications in lens aging and cataract formation. Shamsi FA; Lin K; Sady C; Nagaraj RH Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2355-64. PubMed ID: 9804144 [TBL] [Abstract][Full Text] [Related]
22. EM immunolocalization of alpha-crystallins: association with the plasma membrane from normal and cataractous human lenses. Boyle DL; Takemoto L Curr Eye Res; 1996 May; 15(5):577-82. PubMed ID: 8670759 [TBL] [Abstract][Full Text] [Related]
23. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
24. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
25. Further studies on the dynamic changes of glutathione and protein-thiol mixed disulfides in H2O2 induced cataract in rat lenses: distributions and effect of aging. Lou MF; Xu GT; Cui XL Curr Eye Res; 1995 Oct; 14(10):951-8. PubMed ID: 8549161 [TBL] [Abstract][Full Text] [Related]
26. Deamidation of alpha-A crystallin from nuclei of cataractous and normal human lenses. Takemoto L; Boyle D Mol Vis; 1999 Feb; 5():2. PubMed ID: 10085374 [TBL] [Abstract][Full Text] [Related]
27. Glutathione levels of the human crystalline lens in aging and its antioxidant effect against the oxidation of lens proteins. Kamei A Biol Pharm Bull; 1993 Sep; 16(9):870-5. PubMed ID: 8268853 [TBL] [Abstract][Full Text] [Related]
29. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography. Pereira PC; Ramalho JS; Faro CJ; Mota MC Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432 [TBL] [Abstract][Full Text] [Related]
30. Observation of protein diffusivity in intact human and bovine lenses with application to cataract. Tanaka T; Benedek GB Invest Ophthalmol; 1975 Jun; 14(6):449-56. PubMed ID: 1132941 [TBL] [Abstract][Full Text] [Related]
31. Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. Hains PG; Truscott RJ J Proteome Res; 2007 Oct; 6(10):3935-43. PubMed ID: 17824632 [TBL] [Abstract][Full Text] [Related]
32. Characterization of three isoforms of a 9 kDa gamma D-crystallin fragment isolated from human lenses. Srivastava OP; Srivastava K Exp Eye Res; 1996 Jun; 62(6):593-604. PubMed ID: 8983941 [TBL] [Abstract][Full Text] [Related]
33. Biochemical evidence for conversion to milder form of hereditary mouse cataract by different genetic background. Wada E; Koyama-Ito H; Matsuzawa A Exp Eye Res; 1991 May; 52(5):501-6. PubMed ID: 2065720 [TBL] [Abstract][Full Text] [Related]
34. Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses. Hains PG; Truscott RJ Biochim Biophys Acta; 2008 Dec; 1784(12):1959-64. PubMed ID: 18761110 [TBL] [Abstract][Full Text] [Related]
35. Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging. Nye-Wood MG; Spraggins JM; Caprioli RM; Schey KL; Donaldson PJ; Grey AC Exp Eye Res; 2017 Jan; 154():70-78. PubMed ID: 27838309 [TBL] [Abstract][Full Text] [Related]
36. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses. Bessems GJ; Keizer E; Wollensak J; Hoenders HJ Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993 [TBL] [Abstract][Full Text] [Related]
37. Alteration of crystallin polypeptides in rat lenses during the development of galactose-induced cataract. Zhao H; Ren X Yan Ke Xue Bao; 1993 Sep; 9(3):143-5. PubMed ID: 8168609 [TBL] [Abstract][Full Text] [Related]
38. The Proteome of Cataract Markers: Focus on Crystallins. Zhang K; Zhu X; Lu Y Adv Clin Chem; 2018; 86():179-210. PubMed ID: 30144840 [TBL] [Abstract][Full Text] [Related]
39. Quantitation of membrane-associated crystallins from aging and cataractous human lenses. Takehana M; Takemoto L Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688 [TBL] [Abstract][Full Text] [Related]
40. Alpha neoprotein molecules in normal lenses from animals of different ages and in cataractous lenses. Manski W; Malinowski K Exp Eye Res; 1985 Feb; 40(2):179-90. PubMed ID: 3884353 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]