These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 20687124)
1. Progenitor-derived endothelial cell response, platelet reactivity and haemocompatibility parameters indicate the potential of NaOH-treated polycaprolactone for vascular tissue engineering. Serrano MC; Pagani R; Peña J; Vallet-Regí M; Comas JV; Portolés MT J Tissue Eng Regen Med; 2011 Mar; 5(3):238-47. PubMed ID: 20687124 [TBL] [Abstract][Full Text] [Related]
2. Nitric oxide production by endothelial cells derived from blood progenitors cultured on NaOH-treated polycaprolactone films: A biofunctionality study. Serrano MC; Pagani R; Vallet-Regí M; Peña J; Comas JV; Portolés MT Acta Biomater; 2009 Jul; 5(6):2045-53. PubMed ID: 19332384 [TBL] [Abstract][Full Text] [Related]
3. Endothelial cells derived from circulating progenitors as an effective source to functional endothelialization of NaOH-treated poly(epsilon-caprolactone) films. Serrano MC; Pagani R; Ameer GA; Vallet-Regí M; Portolés MT J Biomed Mater Res A; 2008 Dec; 87(4):964-71. PubMed ID: 18257077 [TBL] [Abstract][Full Text] [Related]
4. Vascular endothelial and smooth muscle cell culture on NaOH-treated poly(epsilon-caprolactone) films: a preliminary study for vascular graft development. Serrano MC; Portolés MT; Vallet-Regí M; Izquierdo I; Galletti L; Comas JV; Pagani R Macromol Biosci; 2005 May; 5(5):415-23. PubMed ID: 15895476 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly(epsilon-caprolactone) films. Serrano MC; Pagani R; Manzano M; Comas JV; Portolés MT Biomaterials; 2006 Sep; 27(27):4706-14. PubMed ID: 16730794 [TBL] [Abstract][Full Text] [Related]
6. Beyond cell capture: antibody conjugation improves hemocompatibility for vascular tissue engineering applications. Chong MS; Teoh SH; Teo EY; Zhang ZY; Lee CN; Koh S; Choolani M; Chan J Tissue Eng Part A; 2010 Aug; 16(8):2485-95. PubMed ID: 20214450 [TBL] [Abstract][Full Text] [Related]
7. Biological performances of collagen-based scaffolds for vascular tissue engineering. Boccafoschi F; Habermehl J; Vesentini S; Mantovani D Biomaterials; 2005 Dec; 26(35):7410-7. PubMed ID: 15998538 [TBL] [Abstract][Full Text] [Related]
8. The in vitro and in vivo biocompatibility evaluation of heparin-poly(ε-caprolactone) conjugate for vascular tissue engineering scaffolds. Ye L; Wu X; Duan HY; Geng X; Chen B; Gu YQ; Zhang AY; Zhang J; Feng ZG J Biomed Mater Res A; 2012 Dec; 100(12):3251-8. PubMed ID: 22733560 [TBL] [Abstract][Full Text] [Related]
10. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Ku SH; Park CB Biomaterials; 2010 Dec; 31(36):9431-7. PubMed ID: 20880578 [TBL] [Abstract][Full Text] [Related]
11. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation. Hsu SH; Tang CM; Lin CC Biomaterials; 2004 Nov; 25(25):5593-601. PubMed ID: 15159075 [TBL] [Abstract][Full Text] [Related]
12. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering. Pankajakshan D; Krishnan V K; Krishnan LK Biofabrication; 2010 Dec; 2(4):041001. PubMed ID: 21076184 [TBL] [Abstract][Full Text] [Related]
13. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Jiang H; Wang XB; Li CY; Li JS; Xu FJ; Mao C; Yang WT; Shen J Langmuir; 2011 Sep; 27(18):11575-81. PubMed ID: 21851101 [TBL] [Abstract][Full Text] [Related]
14. Functionalization of the surface of electrospun poly(epsilon-caprolactone) mats using zwitterionic poly(carboxybetaine methacrylate) and cell-specific peptide for endothelial progenitor cells capture. Li Q; Wang Z; Zhang S; Zheng W; Zhao Q; Zhang J; Wang L; Wang S; Kong D Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1646-53. PubMed ID: 23827619 [TBL] [Abstract][Full Text] [Related]
15. Blood compatibility evaluation of poly(D,L-lactide-co-beta-malic acid) modified with the GRGDS sequence. Liu Y; Wang W; Wang J; Wang Y; Yuan Z; Tang S; Liu M; Tang H Colloids Surf B Biointerfaces; 2010 Jan; 75(1):370-6. PubMed ID: 19811897 [TBL] [Abstract][Full Text] [Related]
16. Influence of polymer content in Ca-deficient hydroxyapatite-polycaprolactone nanocomposites on the formation of microvessel-like structures. Fuchs S; Jiang X; Gotman I; Makarov C; Schmidt H; Gutmanas EY; Kirkpatrick CJ Acta Biomater; 2010 Aug; 6(8):3169-77. PubMed ID: 20144913 [TBL] [Abstract][Full Text] [Related]
17. The phenotypic response of bovine corneal endothelial cells on chitosan/polycaprolactone blends. Wang TJ; Wang IJ; Chen S; Chen YH; Young TH Colloids Surf B Biointerfaces; 2012 Feb; 90():236-43. PubMed ID: 22078926 [TBL] [Abstract][Full Text] [Related]
18. Enhancing blood compatibility of biodegradable polymers by introducing sulfobetaine. Cao J; Chen YW; Wang X; Luo XL J Biomed Mater Res A; 2011 Jun; 97(4):472-9. PubMed ID: 21495169 [TBL] [Abstract][Full Text] [Related]
19. Surface engineering of polycaprolactone by biomacromolecules and their blood compatibility. Khandwekar AP; Patil DP; Shouche Y; Doble M J Biomater Appl; 2011 Aug; 26(2):227-52. PubMed ID: 20511382 [TBL] [Abstract][Full Text] [Related]
20. Human progenitor-derived endothelial cells vs. venous endothelial cells for vascular tissue engineering: an in vitro study. Thebaud NB; Bareille R; Remy M; Bourget C; Daculsi R; Bordenave L J Tissue Eng Regen Med; 2010 Aug; 4(6):473-84. PubMed ID: 20112278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]