BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20687479)

  • 1. Role of membrane lipids for the activity of pore forming peptides and proteins.
    Fuertes G; Giménez D; Esteban-Martin S; Garcia-Sáez A; Sánchez O; Salgado J
    Adv Exp Med Biol; 2010; 677():31-55. PubMed ID: 20687479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance.
    Gurtovenko AA; Vattulainen I
    Biophys J; 2007 Mar; 92(6):1878-90. PubMed ID: 17208976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics and self-assembly of amphipathic peptide pores in lipid membranes.
    Zemel A; Fattal DR; Ben-Shaul A
    Biophys J; 2003 Apr; 84(4):2242-55. PubMed ID: 12668433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An active machine learning discovery platform for membrane-disrupting and pore-forming peptides.
    van Teijlingen A; Edwards DC; Hu L; Lilienkampf A; Cockroft SL; Tuttle T
    Phys Chem Chem Phys; 2024 Jun; 26(25):17745-17752. PubMed ID: 38873737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins.
    Kulma M; Anderluh G
    Cell Mol Life Sci; 2021 Sep; 78(17-18):6229-6249. PubMed ID: 34387717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Templated Assembly of Pore-forming Peptides in Lipid Membranes.
    Unwin AP; Hine PJ; Ward IM; Fujita M; Tanaka E; Gusev AA
    Chimia (Aarau); 2019 Feb; 73(1-2):59. PubMed ID: 30814000
    [No Abstract]   [Full Text] [Related]  

  • 7. Initiation and evolution of pores formed by influenza fusion peptides probed by lysolipid inclusion.
    Rice A; Zimmerberg J; Pastor RW
    Biophys J; 2023 Mar; 122(6):1018-1032. PubMed ID: 36575795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulated dynamic cholesterol redistribution favors membrane fusion pore constriction.
    Beaven AH; Sapp K; Sodt AJ
    Biophys J; 2023 Jun; 122(11):2162-2175. PubMed ID: 36588341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Cell-Penetrating Peptides Behave Differently from Pore-Forming Peptides: Structure and Stability of Induced Transmembrane Pores.
    Alimohamadi H; de Anda J; Lee MW; Schmidt NW; Mandal T; Wong GCL
    J Am Chem Soc; 2023 Dec; 145(48):26095-26105. PubMed ID: 37989570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. To Close or to Collapse: The Role of Charges on Membrane Stability upon Pore Formation.
    Lira RB; Leomil FSC; Melo RJ; Riske KA; Dimova R
    Adv Sci (Weinh); 2021 Jun; 8(11):e2004068. PubMed ID: 34105299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dynamic view of peptides and proteins in membranes.
    Bechinger B
    Cell Mol Life Sci; 2008 Oct; 65(19):3028-39. PubMed ID: 18535783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How cell penetrating peptides behave differently from pore forming peptides: structure and stability of induced transmembrane pores.
    Alimohamadi H; de Anda J; Lee MW; Schmidt NW; Mandal T; Wong GCL
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation.
    Has C; Das SL
    J Membr Biol; 2023 Dec; 256(4-6):343-372. PubMed ID: 37650909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge-Triggered Membrane Insertion of Matrix Metalloproteinase-7, Supporter of Innate Immunity and Tumors.
    Prior SH; Fulcher YG; Koppisetti RK; Jurkevich A; Van Doren SR
    Structure; 2015 Nov; 23(11):2099-110. PubMed ID: 26439767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous phase separation as a possible route to compartmentalization of biological molecules.
    Keating CD
    Acc Chem Res; 2012 Dec; 45(12):2114-24. PubMed ID: 22330132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane Binding Strength vs Pore Formation Cost─What Drives the Membrane Permeation of Nanoparticles Coated with Cell-Penetrating Peptides?
    Klug J; Berberián MV; López Martí JM; Mayorga LS; Del Pópolo MG
    J Phys Chem B; 2024 Feb; 128(4):937-948. PubMed ID: 38232319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivalency amplifies the selection and affinity of bradykinin-derived peptides for lipid nanovesicles.
    Saludes JP; Morton LA; Coulup SK; Fiorini Z; Cook BM; Beninson L; Chapman ER; Fleshner M; Yin H
    Mol Biosyst; 2013 Aug; 9(8):2005-9. PubMed ID: 23715428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How was membrane permeability produced in an RNA world?
    Vlassov A
    Orig Life Evol Biosph; 2005 Apr; 35(2):135-49. PubMed ID: 16010994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design of Membrane-Pore-Forming Peptides.
    Pillong M; Hiss JA; Schneider P; Lin YC; Posselt G; Pfeiffer B; Blatter M; Müller AT; Bachler S; Neuhaus CS; Dittrich PS; Altmann KH; Wessler S; Schneider G
    Small; 2017 Oct; 13(40):. PubMed ID: 28799716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane Dynamics and Remodelling in Response to the Action of the Membrane-Damaging Pore-Forming Toxins.
    Lata K; Singh M; Chatterjee S; Chattopadhyay K
    J Membr Biol; 2022 Jun; 255(2-3):161-173. PubMed ID: 35305136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.