These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 20687533)
1. Conformation and intermolecular interactions of SA2 peptides self-assembled into vesicles. van Hell AJ; Klymchenko A; Burgers PP; Moret EE; Jiskoot W; Hennink WE; Crommelin DJ; Mastrobattista E J Phys Chem B; 2010 Sep; 114(34):11046-52. PubMed ID: 20687533 [TBL] [Abstract][Full Text] [Related]
2. Solvent Controlled Structural Transition of KI4K Self-Assemblies: from Nanotubes to Nanofibrils. Zhao Y; Deng L; Wang J; Xu H; Lu JR Langmuir; 2015 Dec; 31(47):12975-83. PubMed ID: 26540520 [TBL] [Abstract][Full Text] [Related]
3. Stabilization of peptide vesicles by introducing inter-peptide disulfide bonds. van Hell AJ; Crommelin DJ; Hennink WE; Mastrobattista E Pharm Res; 2009 Sep; 26(9):2186-93. PubMed ID: 19582551 [TBL] [Abstract][Full Text] [Related]
4. Arginine/Tryptophan-Rich Cyclic α/β-Antimicrobial Peptides: The Roles of Hydrogen Bonding and Hydrophobic/Hydrophilic Solvent-Accessible Surface Areas upon Activity and Membrane Selectivity. Bagheri M; Amininasab M; Dathe M Chemistry; 2018 Sep; 24(53):14242-14253. PubMed ID: 29969522 [TBL] [Abstract][Full Text] [Related]
5. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. Rajagopal K; Ozbas B; Pochan DJ; Schneider JP Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291 [TBL] [Abstract][Full Text] [Related]
6. Combined effects of solvation and aggregation propensity on the final supramolecular structures adopted by hydrophobic, glycine-rich, elastin-like polypeptides. Salvi AM; Moscarelli P; Bochicchio B; Lanza G; Castle JE Biopolymers; 2013 May; 99(5):292-313. PubMed ID: 23426573 [TBL] [Abstract][Full Text] [Related]
7. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638 [TBL] [Abstract][Full Text] [Related]
8. Anionic phospholipids modulate peptide insertion into membranes. Liu LP; Deber CM Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930 [TBL] [Abstract][Full Text] [Related]
9. Formation of Annular Protofibrillar Assembly by Cysteine Tripeptide: Unraveling the Interactions with NMR, FTIR, and Molecular Dynamics. Banerji B; Chatterjee M; Pal U; Maiti NC J Phys Chem B; 2017 Jul; 121(26):6367-6379. PubMed ID: 28593765 [TBL] [Abstract][Full Text] [Related]
10. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988 [TBL] [Abstract][Full Text] [Related]
11. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. Wimley WC; Hristova K; Ladokhin AS; Silvestro L; Axelsen PH; White SH J Mol Biol; 1998 Apr; 277(5):1091-110. PubMed ID: 9571025 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly of t-butyloxycarbonyl protected dipeptide methyl esters composed of leucine, isoleucine, and valine into highly organized structures from alcohol and aqueous alcohol mixtures. Subbalakshmi C; Basak P; Nagaraj R Biopolymers; 2017 Nov; 108(6):. PubMed ID: 28589640 [TBL] [Abstract][Full Text] [Related]
13. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Ren J; Lew S; Wang J; London E Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543 [TBL] [Abstract][Full Text] [Related]
14. Aromatic interactions in tryptophan-containing peptides: crystal structures of model tryptophan peptides and phenylalanine analogs. Sengupta A; Mahalakshmi R; Shamala N; Balaram P J Pept Res; 2005 Jan; 65(1):113-29. PubMed ID: 15686542 [TBL] [Abstract][Full Text] [Related]
15. Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Han S; Cao S; Wang Y; Wang J; Xia D; Xu H; Zhao X; Lu JR Chemistry; 2011 Nov; 17(46):13095-102. PubMed ID: 21956759 [TBL] [Abstract][Full Text] [Related]
16. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. Paramonov SE; Jun HW; Hartgerink JD J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483 [TBL] [Abstract][Full Text] [Related]
17. Self-assembly of Arg-Phe nanostructures via the solid-vapor phase method. Liberato MS; Kogikoski S; Silva ER; Coutinho-Neto MD; Scott LP; Silva RH; Oliveira VX; Ando RA; Alves WA J Phys Chem B; 2013 Jan; 117(3):733-40. PubMed ID: 23286315 [TBL] [Abstract][Full Text] [Related]
19. Peptide nanovesicles formed by the self-assembly of branched amphiphilic peptides. Gudlur S; Sukthankar P; Gao J; Avila LA; Hiromasa Y; Chen J; Iwamoto T; Tomich JM PLoS One; 2012; 7(9):e45374. PubMed ID: 23028970 [TBL] [Abstract][Full Text] [Related]
20. The Supramolecular Organization of a Peptide-Based Nanocarrier at High Molecular Detail. Rad-Malekshahi M; Visscher KM; Rodrigues JP; de Vries R; Hennink WE; Baldus M; Bonvin AM; Mastrobattista E; Weingarth M J Am Chem Soc; 2015 Jun; 137(24):7775-84. PubMed ID: 26022089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]