These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20687725)

  • 61. Magnetic exchange force microscopy with atomic resolution.
    Kaiser U; Schwarz A; Wiesendanger R
    Nature; 2007 Mar; 446(7135):522-5. PubMed ID: 17392782
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A heater-integrated scanning probe microscopy probe array with different tip radii for study of micro-nanosize effects on silicon-tip/polymer-film friction.
    Bao H; Li X
    Rev Sci Instrum; 2008 Mar; 79(3):033701. PubMed ID: 18377009
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A microcantilever heater-thermometer with a thermal isolation layer for making thermal nanotopography measurements.
    Dai Z; Corbin EA; King WP
    Nanotechnology; 2010 Feb; 21(5):055503. PubMed ID: 20023322
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Focussed ion beam machined cantilever aperture probes for near-field optical imaging.
    Jin EX; Xu X
    J Microsc; 2008 Mar; 229(Pt 3):503-11. PubMed ID: 18331502
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [The new measurement technics in biology and medicine--atomic force microscopy].
    Targosz M; Szymoński M; Miklaszewska M; Pietrzyk JA; Sułowicz W; Rumian R; Krawentek L
    Przegl Lek; 2003; 60(12):828-31. PubMed ID: 15058026
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Near-field thermal imaging of optically excited gold nanostructures: scaling principles for collective heating with heat dissipation into the surrounding medium.
    Baral S; Rafiei Miandashti A; Richardson HH
    Nanoscale; 2018 Jan; 10(3):941-948. PubMed ID: 29293252
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nanowires enabling signal-enhanced nanoscale Raman spectroscopy.
    Becker M; Sivakov V; Gösele U; Stelzner T; Andrä G; Reich HJ; Hoffmann S; Michler J; Christiansen SH
    Small; 2008 Apr; 4(4):398-404. PubMed ID: 18383193
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film.
    Chien HC; Yao DJ; Huang MJ; Chang TY
    Rev Sci Instrum; 2008 May; 79(5):054902. PubMed ID: 18513085
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mechanical analysis of bone and its microarchitecture based on in vivo voxel images.
    Ulrich D; Rietbergen B; Laib A; Rüegsegger P
    Technol Health Care; 1998 Dec; 6(5-6):421-7. PubMed ID: 10100944
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spatially and temporally resolved thermal imaging of cyclically heated interconnects by use of scanning thermal microscopy.
    Barbosa N; Slifka AJ
    Microsc Res Tech; 2008 Aug; 71(8):579-84. PubMed ID: 18459141
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantitative Mapping of Unmodulated Temperature Fields with Nanometer Resolution.
    Reihani A; Luan Y; Yan S; Lim JW; Meyhofer E; Reddy P
    ACS Nano; 2022 Jan; 16(1):939-950. PubMed ID: 34958551
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quantitative scanning thermal microscopy based on determination of thermal probe dynamic resistance.
    Bodzenta J; Juszczyk J; Chirtoc M
    Rev Sci Instrum; 2013 Sep; 84(9):093702. PubMed ID: 24089831
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Thin dielectric film thickness determination by advanced transmission electron microscopy.
    Diebold AC; Foran B; Kisielowski C; Muller DA; Pennycook SJ; Principe E; Stemmer S
    Microsc Microanal; 2003 Dec; 9(6):493-508. PubMed ID: 14750984
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Amperometric nitric oxide microsensor based on nanopore-platinized platinum: the application for imaging NO concentrations.
    Shim JH; Lee Y
    Anal Chem; 2009 Oct; 81(20):8571-6. PubMed ID: 19775121
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of batch-microfabricated scanning electrochemical-atomic force microscopy probes.
    Dobson PS; Weaver JM; Holder MN; Unwin PR; Macpherson JV
    Anal Chem; 2005 Jan; 77(2):424-34. PubMed ID: 15649037
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Micromachined hot-wire thermal conductivity probe for biomedical applications.
    Yi M; Panchawagh HV; Podhajsky RJ; Mahajan RL
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2477-84. PubMed ID: 19403359
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quantifying thermal transport in buried semiconductor nanostructures via cross-sectional scanning thermal microscopy.
    Spièce J; Evangeli C; Robson AJ; El Sachat A; Haenel L; Alonso MI; Garriga M; Robinson BJ; Oehme M; Schulze J; Alzina F; Sotomayor Torres C; Kolosov OV
    Nanoscale; 2021 Jun; 13(24):10829-10836. PubMed ID: 34114577
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Correction of distortion due to thermal drift in scanning probe microscopy.
    Salmons BS; Katz DR; Trawick ML
    Ultramicroscopy; 2010 Mar; 110(4):339-49. PubMed ID: 20149540
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK.
    Khotkevych VV; Milosević MV; Bending SJ
    Rev Sci Instrum; 2008 Dec; 79(12):123708. PubMed ID: 19123570
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.