BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20687740)

  • 1. Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer.
    Giriat G; Wang W; Attfield JP; Huxley AD; Kamenev KV
    Rev Sci Instrum; 2010 Jul; 81(7):073905. PubMed ID: 20687740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniature ceramic-anvil high-pressure cell for magnetic measurements in a commercial superconducting quantum interference device magnetometer.
    Tateiwa N; Haga Y; Fisk Z; Ōnuki Y
    Rev Sci Instrum; 2011 May; 82(5):053906. PubMed ID: 21639517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature anvil cell for high-pressure measurements in a commercial superconducting quantum interference device magnetometer.
    Alireza PL; Lonzarich GG
    Rev Sci Instrum; 2009 Feb; 80(2):023906. PubMed ID: 19256661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonmagnetic high pressure cell for magnetic remanence measurements up to 1.5 GPa in a superconducting quantum interference device magnetometer.
    Sadykov RA; Bezaeva NS; Kharkovskiy AI; Rochette P; Gattacceca J; Trukhin VI
    Rev Sci Instrum; 2008 Nov; 79(11):115102. PubMed ID: 19045908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Note: Improved sensitivity of magnetic measurements under high pressure in miniature ceramic anvil cell for a commercial SQUID magnetometer.
    Tateiwa N; Haga Y; Matsuda TD; Fisk Z; Ikeda S; Kobayashi H
    Rev Sci Instrum; 2013 Apr; 84(4):046105. PubMed ID: 23635239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic measurements at pressures above 10 GPa in a miniature ceramic anvil cell for a superconducting quantum interference device magnetometer.
    Tateiwa N; Haga Y; Matsuda TD; Fisk Z
    Rev Sci Instrum; 2012 May; 83(5):053906. PubMed ID: 22667632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of the Bridgman anvil cell to liquid pressure mediums.
    Rüetschi AS; Jaccard D
    Rev Sci Instrum; 2007 Dec; 78(12):123901. PubMed ID: 18163734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of high-pressure and high-field ESR system using SQUID magnetometer.
    Sakurai T; Fujimoto K; Goto R; Okubo S; Ohta H; Uwatoko Y
    J Magn Reson; 2012 Oct; 223():41-5. PubMed ID: 22967886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density measurements of noncrystalline materials at high pressure with diamond anvil cell.
    Hong X; Shen G; Prakapenka VB; Rivers ML; Sutton SR
    Rev Sci Instrum; 2007 Oct; 78(10):103905. PubMed ID: 17979433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniature diamond anvil cell for broad range of high pressure measurements.
    Gavriliuk AG; Mironovich AA; Struzhkin VV
    Rev Sci Instrum; 2009 Apr; 80(4):043906. PubMed ID: 19405674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials.
    Evans WJ; Yoo CS; Lee GW; Cynn H; Lipp MJ; Visbeck K
    Rev Sci Instrum; 2007 Jul; 78(7):073904. PubMed ID: 17672770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A perforated diamond anvil cell for high-energy x-ray diffraction of liquids and amorphous solids at high pressure.
    Soignard E; Benmore CJ; Yarger JL
    Rev Sci Instrum; 2010 Mar; 81(3):035110. PubMed ID: 20370216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile type miniature diamond anvil high-pressure cell.
    Yamaoka S; Fukunaga O; Shimomura O; Nakazawa H
    Rev Sci Instrum; 1979 Sep; 50(9):1163-4. PubMed ID: 18699695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and performance of tapered cubic anvil used for achieving higher pressure and larger sample cell.
    Han QG; Yang WK; Zhu PW; Ban QC; Yan N; Zhang Q
    Rev Sci Instrum; 2013 Jul; 84(7):073902. PubMed ID: 23902079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.
    Takeda K; Mori H; Yamaguchi A; Ishimoto H; Nakamura T; Kuriki S; Hozumi T; Ohkoshi S
    Rev Sci Instrum; 2008 Mar; 79(3):033909. PubMed ID: 18377027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplified manual fabrication of cubic-zirconia gem anvils for extended energy-range spectroscopic studies to routine high pressures of 100-150 kbar (10-15 GPa).
    Jackson NR; Erasmus RM; Hearne GR
    Rev Sci Instrum; 2010 Jul; 81(7):073903. PubMed ID: 20687738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superconducting quantum interference device setup for magnetoelectric measurements.
    Borisov P; Hochstrat A; Shvartsman VV; Kleemann W
    Rev Sci Instrum; 2007 Oct; 78(10):106105. PubMed ID: 17979461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Note: simultaneous measurements of magnetization and electrical transport signal by a reconstructed superconducting quantum interference device magnetometer.
    Wang HL; Yu XZ; Wang SL; Chen L; Zhao JH
    Rev Sci Instrum; 2013 Aug; 84(8):086103. PubMed ID: 24007123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Note: An anvil-preformed gasket system to extend the pressure range for large volume cubic presses.
    Wang H; He D; Tan N; Wang W; Wang J; Dong H; Ma H; Kou Z; Peng F; Liu X; Li S
    Rev Sci Instrum; 2010 Nov; 81(11):116102. PubMed ID: 21133504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K.
    Nagendran R; Thirumurugan N; Chinnasamy N; Janawadkar MP; Sundar CS
    Rev Sci Instrum; 2011 Jan; 82(1):015109. PubMed ID: 21280860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.