These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 20687740)

  • 21. A combination of a Drickamer anvil apparatus and monochromatic X-rays for stress and strain measurements under high pressure.
    Nishiyama N; Wang Y; Irifune T; Sanehira T; Rivers ML; Sutton SR; Cookson D
    J Synchrotron Radiat; 2009 Nov; 16(Pt 6):742-7. PubMed ID: 19844008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of a new composite cubic-boron nitride gasket assembly for high pressure inelastic x-ray scattering studies of carbon related materials.
    Wang L; Yang W; Xiao Y; Liu B; Chow P; Shen G; Mao WL; Mao HK
    Rev Sci Instrum; 2011 Jul; 82(7):073902. PubMed ID: 21806194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-pressure in situ density measurement of low-Z noncrystalline materials with a diamond-anvil cell by an x-ray absorption method.
    Sato T; Funamori N
    Rev Sci Instrum; 2008 Jul; 79(7):073906. PubMed ID: 18681715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Containment of fluid samples in the hydrothermal diamond-anvil cell without the use of metal gaskets: performance and advantages for in situ analysis.
    Chou IM; Bassett WA; Anderson AJ; Mayanovic RA; Shang L
    Rev Sci Instrum; 2008 Nov; 79(11):115103. PubMed ID: 19045909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of diamond under hydrostatic pressures up to 140 GPa.
    Occelli F; Loubeyre P; LeToullec R
    Nat Mater; 2003 Mar; 2(3):151-4. PubMed ID: 12612670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thickness measurement of sample in diamond anvil cell.
    Li M; Gao C; Peng G; He C; Hao A; Huang X; Zhang D; Yu C; Ma Y; Zou G
    Rev Sci Instrum; 2007 Jul; 78(7):075106. PubMed ID: 17672792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ temperature measurements through i-anvils in diamond anvil cells.
    Gondé C; Bureau H; Burchard M; Henry S; Simon G; Meijer J; Kubsky S
    Rev Sci Instrum; 2010 Feb; 81(2):023902. PubMed ID: 20192504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-pressure polymorphs of olivine and the 660-km seismic discontinuity.
    Chudinovskikh L; Boehler R
    Nature; 2001 May; 411(6837):574-7. PubMed ID: 11385569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of an energy-domain 57Fe-Mössbauer spectrometer using synchrotron radiation and its application to ultrahigh-pressure studies with a diamond anvil cell.
    Mitsui T; Hirao N; Ohishi Y; Masuda R; Nakamura Y; Enoki H; Sakaki K; Seto M
    J Synchrotron Radiat; 2009 Nov; 16(Pt 6):723-9. PubMed ID: 19844005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An electrical microheater technique for high-pressure and high-temperature diamond anvil cell experiments.
    Weir ST; Jackson DD; Falabella S; Samudrala G; Vohra YK
    Rev Sci Instrum; 2009 Jan; 80(1):013905. PubMed ID: 19191445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High pressure superconductivity in iron-based layered compounds studied using designer diamonds.
    Tsoi G; Stemshorn AK; Vohra YK; Wu PM; Hsu FC; Huang YL; Wu MK; Yeh KW; Weir ST
    J Phys Condens Matter; 2009 Jun; 21(23):232201. PubMed ID: 21825575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements.
    Feng Y; Silevitch DM; Rosenbaum TF
    Rev Sci Instrum; 2014 Mar; 85(3):033901. PubMed ID: 24689594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The measurement of small magnetic signals from magnetic nanoparticles attached to the cell surface and surrounding living cells using a general-purpose SQUID magnetometer.
    Hashimoto S; Oda T; Yamada K; Takagi M; Enomoto T; Ohkohchi N; Takagi T; Kanamori T; Ikeda H; Yanagihara H; Kita E; Tasaki A
    Phys Med Biol; 2009 Apr; 54(8):2571-83. PubMed ID: 19349659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High pressure ellipsometry: a novel method for measuring the optical properties and electronic structure of materials in diamond anvil cells.
    Nissim N; Eliezer S; Bakshi L; Perelmutter L; Pasternak MP
    Rev Sci Instrum; 2011 Mar; 82(3):033905. PubMed ID: 21456761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Four-probe electrical measurements with a liquid pressure medium in a diamond anvil cell.
    Jaramillo R; Feng Y; Rosenbaum TF
    Rev Sci Instrum; 2012 Oct; 83(10):103902. PubMed ID: 23126777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ Hall effect measurement on diamond anvil cell under high pressure.
    Hu T; Cui X; Gao Y; Han Y; Liu C; Liu B; Liu H; Ma Y; Gao C
    Rev Sci Instrum; 2010 Nov; 81(11):115101. PubMed ID: 21133495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finite element analysis and design of cubic high-pressure anvils based on the principle of lateral support.
    Han QG; Li MZ; Jia XP; Ma HA
    Rev Sci Instrum; 2010 Dec; 81(12):123901. PubMed ID: 21198034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strength analysis and optimisation of double-toroidal anvils for high-pressure research.
    Fang J; Bull CL; Loveday JS; Nelmes RJ; Kamenev KV
    Rev Sci Instrum; 2012 Sep; 83(9):093902. PubMed ID: 23020389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonmagnetic indenter-type high-pressure cell for magnetic measurements.
    Kobayashi TC; Hidaka H; Kotegawa H; Fujiwara K; Eremets MI
    Rev Sci Instrum; 2007 Feb; 78(2):023909. PubMed ID: 17578125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 90-kilobar diamond-anvil high-pressure cell for use on an automatic diffractometer.
    Schiferl D; Jamieson JC; Lenko JE
    Rev Sci Instrum; 1978 Mar; 49(3):359. PubMed ID: 18699097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.