These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 20687762)
1. A new magnetron based gas aggregation source of metal nanoclusters coupled to a double time-of-flight mass spectrometer system. Momin T; Bhowmick A Rev Sci Instrum; 2010 Jul; 81(7):075110. PubMed ID: 20687762 [TBL] [Abstract][Full Text] [Related]
2. Production of pulsed, mass-selected beams of metal and semiconductor clusters. Kamalou O; Rangama J; Ramillon JM; Guinement P; Huber BA Rev Sci Instrum; 2008 Jun; 79(6):063301. PubMed ID: 18601399 [TBL] [Abstract][Full Text] [Related]
3. On the iron oxide neutral cluster distribution in the gas phase. I. Detection through 193 nm multiphoton ionization. Shin DN; Matsuda Y; Bernstein ER J Chem Phys; 2004 Mar; 120(9):4150-6. PubMed ID: 15268581 [TBL] [Abstract][Full Text] [Related]
4. On the copper oxide neutral cluster distribution in the gas phase: detection through 355 nm and 193 nm multiphoton and 118 nm single photon ionization. Matsuda Y; Shin DN; Bernstein ER J Chem Phys; 2004 Mar; 120(9):4165-71. PubMed ID: 15268583 [TBL] [Abstract][Full Text] [Related]
5. Formation of Monodispersed Films from Size-Selected Copper Nanoclusters. Mondal S; Satpati B; Bhattacharyya SR J Nanosci Nanotechnol; 2015 Jan; 15(1):611-5. PubMed ID: 26328413 [TBL] [Abstract][Full Text] [Related]
6. Laser ablation source for formation and deposition of size-selected metal clusters. Vucković S; Svanqvist M; Popok VN Rev Sci Instrum; 2008 Jul; 79(7):073303. PubMed ID: 18681696 [TBL] [Abstract][Full Text] [Related]
7. Development of metal nanocluster ion source based on dc magnetron plasma sputtering at room temperature. Majumdar A; Köpp D; Ganeva M; Datta D; Bhattacharyya S; Hippler R Rev Sci Instrum; 2009 Sep; 80(9):095103. PubMed ID: 19791960 [TBL] [Abstract][Full Text] [Related]
8. Shock tube coupled to the time-of-flight mass spectrometer via a molecular beam sampling system. Krizancic I; Haluk M; Cho SH; Trass O Rev Sci Instrum; 1979 Jul; 50(7):909-15. PubMed ID: 18699630 [TBL] [Abstract][Full Text] [Related]
9. A new experimental setup designed for the investigation of irradiation of nanosystems in the gas phase: a high intensity mass-and-energy selected cluster beam. Bruny G; Eden S; Feil S; Fillol R; El Farkh K; Harb MM; Teyssier C; Ouaskit S; Abdoul-Carime H; Farizon B; Farizon M; Märk TD Rev Sci Instrum; 2012 Jan; 83(1):013305. PubMed ID: 22299943 [TBL] [Abstract][Full Text] [Related]
10. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: setup and first results on cigarette smoke and human breath. Mühlberger F; Streibel T; Wieser J; Ulrich A; Zimmermann R Anal Chem; 2005 Nov; 77(22):7408-14. PubMed ID: 16285693 [TBL] [Abstract][Full Text] [Related]
11. Isotopic peak intensity ratio based algorithm for determination of isotopic clusters and monoisotopic masses of polypeptides from high-resolution mass spectrometric data. Park K; Yoon JY; Lee S; Paek E; Park H; Jung HJ; Lee SW Anal Chem; 2008 Oct; 80(19):7294-303. PubMed ID: 18754627 [TBL] [Abstract][Full Text] [Related]
12. Effect of gas pressure and gas type on the fragmentation of peptide and oligosaccharide ions generated in an elevated pressure UV/IR-MALDI ion source coupled to an orthogonal time-of-flight mass spectrometer. Soltwisch J; Souady J; Berkenkamp S; Dreisewerd K Anal Chem; 2009 Apr; 81(8):2921-34. PubMed ID: 19301914 [TBL] [Abstract][Full Text] [Related]
13. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source. Mühlberger F; Saraji-Bozorgzad M; Gonin M; Fuhrer K; Zimmermann R Anal Chem; 2007 Nov; 79(21):8118-24. PubMed ID: 17900147 [TBL] [Abstract][Full Text] [Related]
14. Deposition of size-selected metal clusters generated by magnetron sputtering and gas condensation: a progress review. Xirouchaki C; Palmer RE Philos Trans A Math Phys Eng Sci; 2004 Jan; 362(1814):117-24. PubMed ID: 15306279 [TBL] [Abstract][Full Text] [Related]
15. An improved time-of-flight method for cluster deposition and ion-scattering experiments. Turra M; Waldschmidt B; Kaiser B; Schäfer R Rev Sci Instrum; 2008 Jan; 79(1):013905. PubMed ID: 18248048 [TBL] [Abstract][Full Text] [Related]
16. Design and capabilities of an experimental setup based on magnetron sputtering for formation and deposition of size-selected metal clusters on ultra-clean surfaces. Hartmann H; Popok VN; Barke I; von Oeynhausen V; Meiwes-Broer KH Rev Sci Instrum; 2012 Jul; 83(7):073304. PubMed ID: 22852682 [TBL] [Abstract][Full Text] [Related]
17. Small gas-phase dianions of Zn3O(4)(2-), Zn4O(5)(2-), CuZn2O(4)(2-), Si2GeO(6)(2-), Ti2O(5)(2-) and Ti3O(7)(2-). Franzreb K; Sommerfeld T; Williams P Phys Chem Chem Phys; 2007 Feb; 9(7):846-52. PubMed ID: 17287878 [TBL] [Abstract][Full Text] [Related]
18. The gas-phase ligand exchange of copper and nickel acetylacetonate, hexafluoroacetylacetonate and trifluorotrimethylacetylacetonate complexes. Hunter GO; Lerach JO; Lockso TR; Leskiw BD Rapid Commun Mass Spectrom; 2010 Jan; 24(1):129-37. PubMed ID: 19960501 [TBL] [Abstract][Full Text] [Related]
19. The MAXEBIS at GSI as a test ion source for charge breeding and for HITRAP. Kester O; Becker R; Pfister J; Sokolov A; Vorobjev G; Vogel M; Winters D; Zimmermann H Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02A705. PubMed ID: 18315153 [TBL] [Abstract][Full Text] [Related]
20. The size-dependent morphology of Pd nanoclusters formed by gas condensation. Pearmain D; Park SJ; Abdela A; Palmer RE; Li ZY Nanoscale; 2015 Dec; 7(46):19647-52. PubMed ID: 26549633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]