These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 20687813)
1. Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Salerno A; Guarnieri D; Iannone M; Zeppetelli S; Netti PA Tissue Eng Part A; 2010 Aug; 16(8):2661-73. PubMed ID: 20687813 [TBL] [Abstract][Full Text] [Related]
2. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
3. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Zhu Y; Zhu R; Ma J; Weng Z; Wang Y; Shi X; Li Y; Yan X; Dong Z; Xu J; Tang C; Jin L Biomed Mater; 2015 Sep; 10(5):055009. PubMed ID: 26391576 [TBL] [Abstract][Full Text] [Related]
4. Functionalized poly(γ-Glutamic Acid) fibrous scaffolds for tissue engineering. Gentilini C; Dong Y; May JR; Goldoni S; Clarke DE; Lee BH; Pashuck ET; Stevens MM Adv Healthc Mater; 2012 May; 1(3):308-15. PubMed ID: 23184745 [TBL] [Abstract][Full Text] [Related]
5. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-ε-caprolactone scaffolds in osteogenic tissue engineering. Declercq HA; Desmet T; Berneel EE; Dubruel P; Cornelissen MJ Acta Biomater; 2013 Aug; 9(8):7699-708. PubMed ID: 23669624 [TBL] [Abstract][Full Text] [Related]
7. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis. Brennan CM; Eichholz KF; Hoey DA Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493 [TBL] [Abstract][Full Text] [Related]
8. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds. Brennan MÁ; Renaud A; Gamblin AL; D'Arros C; Nedellec S; Trichet V; Layrolle P Biomed Mater; 2015 Aug; 10(4):045019. PubMed ID: 26238732 [TBL] [Abstract][Full Text] [Related]
9. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642 [TBL] [Abstract][Full Text] [Related]
10. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone. Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725 [TBL] [Abstract][Full Text] [Related]
11. In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process. Heo SJ; Kim SE; Wei J; Kim DH; Hyun YT; Yun HS; Kim HK; Yoon TR; Kim SH; Park SA; Shin JW; Shin JW Tissue Eng Part A; 2009 May; 15(5):977-89. PubMed ID: 18803480 [TBL] [Abstract][Full Text] [Related]
12. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Jiang CP; Chen YY; Hsieh MF; Lee HM Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877 [TBL] [Abstract][Full Text] [Related]
13. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056 [TBL] [Abstract][Full Text] [Related]
14. A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly(ε-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells. Zhao Y; Tan K; Zhou Y; Ye Z; Tan WS Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():193-202. PubMed ID: 26652364 [TBL] [Abstract][Full Text] [Related]
15. Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) composite. He D; Dong W; Tang S; Wei J; Liu Z; Gu X; Li M; Guo H; Niu Y J Mater Sci Mater Med; 2014 Jun; 25(6):1415-24. PubMed ID: 24595904 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834 [TBL] [Abstract][Full Text] [Related]
17. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113 [TBL] [Abstract][Full Text] [Related]
18. Effect of topology of poly(L-lactide-co-ε-caprolactone) scaffolds on the response of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells and neuroblastoma cell lines. Thapsukhon B; Daranarong D; Meepowpan P; Suree N; Molloy R; Inthanon K; Wongkham W; Punyodom W J Biomater Sci Polym Ed; 2014 Jul; 25(10):1028-44. PubMed ID: 24856087 [TBL] [Abstract][Full Text] [Related]
19. Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO Moghadam MZ; Hassanajili S; Esmaeilzadeh F; Ayatollahi M; Ahmadi M J Mech Behav Biomed Mater; 2017 May; 69():115-127. PubMed ID: 28068621 [TBL] [Abstract][Full Text] [Related]
20. Engineered mu-bimodal poly(epsilon-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation. Salerno A; Guarnieri D; Iannone M; Zeppetelli S; Di Maio E; Iannace S; Netti PA Acta Biomater; 2009 May; 5(4):1082-93. PubMed ID: 19010746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]