These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20688133)

  • 1. Statistical evidence for power law temporal correlations in exploratory behaviour of rats.
    Yadav CK; Verma MK; Ghosh S
    Biosystems; 2010; 102(2-3):77-81. PubMed ID: 20688133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organized criticality in spatial evolutionary game theory.
    Killingback T; Doebeli M
    J Theor Biol; 1998 Apr; 191(3):335-40. PubMed ID: 9631572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats.
    Hines DJ; Whishaw IQ
    Eur J Neurosci; 2005 Nov; 22(9):2363-75. PubMed ID: 16262675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ibotenate pedunculopontine tegmental nucleus lesions on exploratory behaviour in the open field.
    Steiniger B; Kretschmer BD
    Behav Brain Res; 2004 May; 151(1-2):17-23. PubMed ID: 15084417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movements of exploration intact in rats with hippocampal lesions.
    Clark BJ; Hines DJ; Hamilton DA; Whishaw IQ
    Behav Brain Res; 2005 Aug; 163(1):91-9. PubMed ID: 15904983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor activity (exploration) and formation of home bases in mice (C57BL/6) influenced by visual and tactile cues: modification of movement distribution, distance, location, and speed.
    Clark BJ; Hamilton DA; Whishaw IQ
    Physiol Behav; 2006 Apr; 87(4):805-16. PubMed ID: 16530235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The topography of three-dimensional exploration: a new quantification of vertical and horizontal exploration, postural support, and exploratory bouts in the cylinder test.
    Gharbawie OA; Whishaw PA; Whishaw IQ
    Behav Brain Res; 2004 May; 151(1-2):125-35. PubMed ID: 15084428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movement characteristics support a role for dead reckoning in organizing exploratory behavior.
    Wallace DG; Hamilton DA; Whishaw IQ
    Anim Cogn; 2006 Jul; 9(3):219-28. PubMed ID: 16767471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-dependent change in exploratory behavior of male rats following exposure to threat stimulus: effect of juvenile experience.
    Arakawa H
    Dev Psychobiol; 2007 Jul; 49(5):522-30. PubMed ID: 17577238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus.
    Maurer AP; Vanrhoads SR; Sutherland GR; Lipa P; McNaughton BL
    Hippocampus; 2005; 15(7):841-52. PubMed ID: 16145692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined study of behavior and Fos expression in limbic structures after re-testing Wistar rats in the elevated plus-maze.
    Galvis-Alonso OY; Garcia AM; Orejarena MJ; Lamprea MR; Botelho S; Conde CA; Morato S; Garcia-Cairasco N
    Brain Res Bull; 2010 Apr; 81(6):595-9. PubMed ID: 20100550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twice daily long maternal separations in Wistar rats decreases anxiety-like behaviour in females but does not affect males.
    Eklund MB; Arborelius L
    Behav Brain Res; 2006 Sep; 172(2):278-85. PubMed ID: 16780968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of social and physical enrichment on open field activity differ in male and female Sprague-Dawley rats.
    Elliott BM; Grunberg NE
    Behav Brain Res; 2005 Dec; 165(2):187-96. PubMed ID: 16112757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning.
    Martin MM; Horn KL; Kusman KJ; Wallace DG
    Physiol Behav; 2007 Feb; 90(2-3):412-24. PubMed ID: 17126862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel open field activity detector to determine spatial and temporal movement of laboratory animals after injury and disease.
    Koob AO; Cirillo J; Babbs CF
    J Neurosci Methods; 2006 Oct; 157(2):330-6. PubMed ID: 16735064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models of anxiety: responses of rats to novelty in an open space and an enclosed space.
    Ennaceur A; Michalikova S; Chazot PL
    Behav Brain Res; 2006 Jul; 171(1):26-49. PubMed ID: 16678277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation of exploratory behaviour to plasma corticosterone and Wfs1 gene expression in Wistar rats.
    Sütt S; Raud S; Abramov U; Innos J; Luuk H; Plaas M; Kõks S; Zilmer K; Mahlapuu R; Zilmer M; Vasar E
    J Psychopharmacol; 2010 Jun; 24(6):905-13. PubMed ID: 19346280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motivated exploratory behaviour in the rat: the role of hippocampus and the histaminergic neurotransmission.
    Alvarez EO; Alvarez PA
    Behav Brain Res; 2008 Jan; 186(1):118-25. PubMed ID: 17825439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ischemia-induced hyperactivity: effects of dim versus bright illumination on open-field exploration and habituation following global ischemia in rats.
    Milot M; Plamondon H
    Behav Brain Res; 2008 Oct; 192(2):166-72. PubMed ID: 18499278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in active avoidance behaviour of hypoactive and hyperactive rats subjected to immobilisation stress.
    Chandramohan A; Srinivasan V; Thombre DP
    Indian J Physiol Pharmacol; 1998 Apr; 42(2):214-22. PubMed ID: 10225048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.