BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 20688432)

  • 1. Frictional properties of single crystals HMX, RDX and PETN explosives.
    Wu YQ; Huang FL
    J Hazard Mater; 2010 Nov; 183(1-3):324-33. PubMed ID: 20688432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of explosives by positive corona discharge ion mobility spectrometry.
    Tabrizchi M; Ilbeigi V
    J Hazard Mater; 2010 Apr; 176(1-3):692-6. PubMed ID: 20004055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor.
    Wang C; Huang H; Bunes BR; Wu N; Xu M; Yang X; Yu L; Zang L
    Sci Rep; 2016 May; 6():25015. PubMed ID: 27146290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Metal Film Thickness on Ignition of Organic Explosives with a Laser Pulse.
    Khaneft AV; Dolgachev VA; Rybin SA
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31888210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions.
    Wang C; Fuller ME; Schaefer C; Caplan JL; Jin Y
    J Hazard Mater; 2012 May; 217-218():187-93. PubMed ID: 22480704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy.
    Comanescu G; Manka CK; Grun J; Nikitin S; Zabetakis D
    Appl Spectrosc; 2008 Aug; 62(8):833-9. PubMed ID: 18702854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX.
    Yang X; Lai JL; Zhang Y; Luo XG; Han MW; Zhao SP
    Environ Pollut; 2021 Sep; 285():117478. PubMed ID: 34087636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of the structures and properties of RDX/GAP propellant.
    Li M; Li F; Shen R; Guo X
    J Hazard Mater; 2011 Feb; 186(2-3):2031-6. PubMed ID: 21237558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives.
    Zhu W; Xiao J; Zhu W; Xiao H
    J Hazard Mater; 2009 May; 164(2-3):1082-8. PubMed ID: 18938030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.
    Lee J; Park S; Cho SG; Goh EM; Lee S; Koh SS; Kim J
    Talanta; 2014 Mar; 120():64-70. PubMed ID: 24468343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of soil organic carbon and colloids in sorption and transport of TNT, RDX and HMX in training range soils.
    Sharma P; Mayes MA; Tang G
    Chemosphere; 2013 Aug; 92(8):993-1000. PubMed ID: 23602657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of nitrogen-based explosives with desorption atmospheric pressure photoionization mass spectrometry.
    Kauppila TJ; Flink A; Pukkila J; Ketola RA
    Rapid Commun Mass Spectrom; 2016 Feb; 30(4):467-75. PubMed ID: 26777676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples.
    Babaee S; Beiraghi A
    Anal Chim Acta; 2010 Mar; 662(1):9-13. PubMed ID: 20152259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltammetric determination of nitroaromatic and nitramine explosives contamination in soil.
    Pon Saravanan N; Venugopalan S; Senthilkumar N; Santhosh P; Kavita B; Gurumallesh Prabu H
    Talanta; 2006 May; 69(3):656-62. PubMed ID: 18970618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential biodegradation of TNT, RDX and HMX in a mixture.
    Sagi-Ben Moshe S; Ronen Z; Dahan O; Weisbrod N; Groisman L; Adar E; Nativ R
    Environ Pollut; 2009; 157(8-9):2231-8. PubMed ID: 19428165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous FeII solutions.
    Boparai HK; Comfort SD; Satapanajaru T; Szecsody JE; Grossl PR; Shea PJ
    Chemosphere; 2010 May; 79(8):865-72. PubMed ID: 20226494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity to friction for primary explosives.
    Matyáš R; Šelešovský J; Musil T
    J Hazard Mater; 2012 Apr; 213-214():236-41. PubMed ID: 22349715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe.
    Oztekin EK; Burton DJ; Hahn DW
    Appl Spectrosc; 2016 Apr; 70(4):676-87. PubMed ID: 26865581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep ultraviolet resonance Raman excitation enables explosives detection.
    Tuschel DD; Mikhonin AV; Lemoff BE; Asher SA
    Appl Spectrosc; 2010 Apr; 64(4):425-32. PubMed ID: 20412628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.