These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 20688826)
1. Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni. Hitchcock A; Hall SJ; Myers JD; Mulholland F; Jones MA; Kelly DJ Microbiology (Reading); 2010 Oct; 156(Pt 10):2994-3010. PubMed ID: 20688826 [TBL] [Abstract][Full Text] [Related]
2. It takes two to tango: two TatA paralogues and two redox enzyme-specific chaperones are involved in the localization of twin-arginine translocase substrates in Campylobacter jejuni. Liu YW; Hitchcock A; Salmon RC; Kelly DJ Microbiology (Reading); 2014 Sep; 160(Pt 9):2053-2066. PubMed ID: 24961951 [TBL] [Abstract][Full Text] [Related]
3. Functional characterization of the twin-arginine translocation system in Campylobacter jejuni. Rajashekara G; Drozd M; Gangaiah D; Jeon B; Liu Z; Zhang Q Foodborne Pathog Dis; 2009 Oct; 6(8):935-45. PubMed ID: 19799526 [TBL] [Abstract][Full Text] [Related]
4. Formate dehydrogenase localization and activity are dependent on an intact twin arginine translocation system (Tat) in Campylobacter jejuni 81-176. Kassem II; Rajashekara G Foodborne Pathog Dis; 2014 Dec; 11(12):917-9. PubMed ID: 25268895 [TBL] [Abstract][Full Text] [Related]
5. Twin-arginine translocation system in Helicobacter pylori: TatC, but not TatB, is essential for viability. Benoit SL; Maier RJ mBio; 2014 Jan; 5(1):e01016-13. PubMed ID: 24449753 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of a Campylobacter jejuni alkaline phosphatase secreted via the Tat export machinery. van Mourik A; Bleumink-Pluym NMC; van Dijk L; van Putten JPM; Wösten MMSM Microbiology (Reading); 2008 Feb; 154(Pt 2):584-592. PubMed ID: 18227262 [TBL] [Abstract][Full Text] [Related]
7. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Taylor AJ; Kelly DJ Adv Microb Physiol; 2019; 74():239-329. PubMed ID: 31126532 [TBL] [Abstract][Full Text] [Related]
8. Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Pittman MS; Elvers KT; Lee L; Jones MA; Poole RK; Park SF; Kelly DJ Mol Microbiol; 2007 Jan; 63(2):575-90. PubMed ID: 17241202 [TBL] [Abstract][Full Text] [Related]
9. Intrinsic GTPase activity of a bacterial twin-arginine translocation proofreading chaperone induced by domain swapping. Guymer D; Maillard J; Agacan MF; Brearley CA; Sargent F FEBS J; 2010 Jan; 277(2):511-25. PubMed ID: 20064164 [TBL] [Abstract][Full Text] [Related]
10. Contribution of TAT system translocated PhoX to Campylobacter jejuni phosphate metabolism and resilience to environmental stresses. Drozd M; Gangaiah D; Liu Z; Rajashekara G PLoS One; 2011; 6(10):e26336. PubMed ID: 22028859 [TBL] [Abstract][Full Text] [Related]
11. The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology. Weerakoon DR; Borden NJ; Goodson CM; Grimes J; Olson JW Microb Pathog; 2009 Jul; 47(1):8-15. PubMed ID: 19397993 [TBL] [Abstract][Full Text] [Related]
12. Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones. Kuzniatsova L; Winstone TM; Turner RJ Biochim Biophys Acta; 2016 Apr; 1858(4):767-75. PubMed ID: 26826271 [TBL] [Abstract][Full Text] [Related]
13. Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase. Huang Q; Palmer T mBio; 2017 Aug; 8(4):. PubMed ID: 28765221 [TBL] [Abstract][Full Text] [Related]
14. Electron transport through nitrate and nitrite reductases in Campylobacter jejuni. Pittman MS; Kelly DJ Biochem Soc Trans; 2005 Feb; 33(Pt 1):190-2. PubMed ID: 15667303 [TBL] [Abstract][Full Text] [Related]
15. The twin-arginine translocation system: contributions to the pathobiology of Campylobacter jejuni. Kassem II; Zhang Q; Rajashekara G Future Microbiol; 2011 Nov; 6(11):1315-27. PubMed ID: 22082291 [TBL] [Abstract][Full Text] [Related]
16. The Bdellovibrio bacteriovorus twin-arginine transport system has roles in predatory and prey-independent growth. Chang CY; Hobley L; Till R; Capeness M; Kanna M; Burtt W; Jagtap P; Aizawa SI; Sockett RE Microbiology (Reading); 2011 Nov; 157(Pt 11):3079-3093. PubMed ID: 21903758 [TBL] [Abstract][Full Text] [Related]
17. The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases. McDonough JA; Hacker KE; Flores AR; Pavelka MS; Braunstein M J Bacteriol; 2005 Nov; 187(22):7667-79. PubMed ID: 16267291 [TBL] [Abstract][Full Text] [Related]
18. Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone. Buchanan G; Maillard J; Nabuurs SB; Richardson DJ; Palmer T; Sargent F FEBS Lett; 2008 Dec; 582(29):3979-84. PubMed ID: 19013157 [TBL] [Abstract][Full Text] [Related]
19. Role of the twin-arginine translocase (tat) system in iron uptake in Listeria monocytogenes. Tiwari KB; Birlingmair J; Wilkinson BJ; Jayaswal RK Microbiology (Reading); 2015 Feb; 161(Pt 2):264-271. PubMed ID: 25416690 [TBL] [Abstract][Full Text] [Related]
20. Role of the Tat ransport system in nitrous oxide reductase translocation and cytochrome cd1 biosynthesis in Pseudomonas stutzeri. Heikkilä MP; Honisch U; Wunsch P; Zumft WG J Bacteriol; 2001 Mar; 183(5):1663-71. PubMed ID: 11160097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]