BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20689096)

  • 1. Derivation of a finite-element model of lingual deformation during swallowing from the mechanics of mesoscale myofiber tracts obtained by MRI.
    Mijailovich SM; Stojanovic B; Kojic M; Liang A; Wedeen VJ; Gilbert RJ
    J Appl Physiol (1985); 2010 Nov; 109(5):1500-14. PubMed ID: 20689096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two dimensional computational model coupling myoarchitecture-based lingual tissue mechanics with liquid bolus flow during oropharyngeal swallowing.
    Leichter DM; Stark NE; Leary OP; Brodsky MB; Gilbert RJ; Nicosia MA
    Comput Biol Med; 2022 Jun; 145():105446. PubMed ID: 35390748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Associating the mesoscale fiber organization of the tongue with local strain rate during swallowing.
    Felton SM; Gaige TA; Benner T; Wang R; Reese TG; Wedeen VJ; Gilbert RJ
    J Biomech; 2008; 41(8):1782-9. PubMed ID: 18456271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical basis for lingual muscular deformation during swallowing.
    Napadow VJ; Chen Q; Wedeen VJ; Gilbert RJ
    Am J Physiol; 1999 Sep; 277(3):G695-701. PubMed ID: 10484396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional myoarchitecture of the bovine tongue demonstrated by diffusion spectrum magnetic resonance imaging with tractography.
    Gilbert RJ; Wedeen VJ; Magnusson LH; Benner T; Wang R; Dai G; Napadow VJ; Roche KK
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Nov; 288(11):1173-82. PubMed ID: 17031810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical basis for lingual deformation during the propulsive phase of swallowing as determined by phase-contrast magnetic resonance imaging.
    Felton SM; Gaige TA; Reese TG; Wedeen VJ; Gilbert RJ
    J Appl Physiol (1985); 2007 Jul; 103(1):255-65. PubMed ID: 17395759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional mapping of lingual myoarchitecture by diffusion tensor MRI.
    Kim S; Barnett AS; Pierpaoli C; Chi-Fishman G
    NMR Biomed; 2008 Jun; 21(5):479-88. PubMed ID: 17952877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.
    Hodgson JA; Chi SW; Yang JP; Chen JS; Edgerton VR; Sinha S
    J Mech Behav Biomed Mater; 2012 May; 9():163-83. PubMed ID: 22498294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramural mechanics of the human tongue in association with physiological deformations.
    Napadow VJ; Chen Q; Wedeen VJ; Gilbert RJ
    J Biomech; 1999 Jan; 32(1):1-12. PubMed ID: 10050946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biomechanics of the human tongue.
    Kajee Y; Pelteret JP; Reddy BD
    Int J Numer Method Biomed Eng; 2013 Apr; 29(4):492-514. PubMed ID: 23319169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating muscles underlying tongue base retraction in deglutition using muscular functional magnetic resonance imaging (mfMRI).
    Gassert RB; Pearson WG
    Magn Reson Imaging; 2016 Feb; 34(2):204-8. PubMed ID: 26523657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of lingual tissue deformation associated with bolus containment and propulsion during deglutition as determined by echo-planar MRI.
    Gilbert RJ; Daftary S; Campbell TA; Weisskoff RM
    J Magn Reson Imaging; 1998; 8(3):554-60. PubMed ID: 9626868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of lingual myoarchitecture in whole tissue by NMR imaging of anisotropic water diffusion.
    Gilbert RJ; Reese TG; Daftary SJ; Smith RN; Weisskoff RM; Wedeen VJ
    Am J Physiol; 1998 Aug; 275(2):G363-9. PubMed ID: 9688664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional muscular architecture of the human tongue determined in vivo with diffusion tensor magnetic resonance imaging.
    Gilbert RJ; Napadow VJ
    Dysphagia; 2005; 20(1):1-7. PubMed ID: 15886960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical basis of lingual hydrostatic deformation.
    Gilbert RJ; Napadow VJ; Gaige TA; Wedeen VJ
    J Exp Biol; 2007 Dec; 210(Pt 23):4069-82. PubMed ID: 18025008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomechanical model of sagittal tongue bending.
    Napadow VJ; Kamm RD; Gilbert RJ
    J Biomech Eng; 2002 Oct; 124(5):547-56. PubMed ID: 12405598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of primary and secondary muscle fiber architecture of the bovine tongue by diffusion tensor magnetic resonance imaging.
    Wedeen VJ; Reese TG; Napadow VJ; Gilbert RJ
    Biophys J; 2001 Feb; 80(2):1024-8. PubMed ID: 11159469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinative organization of lingual propulsion during the normal adult swallow.
    Wilson EM; Green JR
    Dysphagia; 2006 Oct; 21(4):226-36. PubMed ID: 17221289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of bolus volume and viscosity on anterior lingual force during the oral stage of swallowing.
    Miller JL; Watkin KL
    Dysphagia; 1996; 11(2):117-24. PubMed ID: 8721070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A visco-hyperelastic constitutive model and its application in bovine tongue tissue.
    Yousefi AK; Nazari MA; Perrier P; Panahi MS; Payan Y
    J Biomech; 2018 Apr; 71():190-198. PubMed ID: 29477259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.