These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20689643)

  • 1. Photo-acoustic concave transmitter for generating high frequency focused ultrasound.
    Baac HW; Ling T; Ashkenazi S; Huang SW; Guo LJ
    Proc SPIE Int Soc Opt Eng; 2010 Feb; 7564(1):75642M. PubMed ID: 20689643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of optical microring ultrasound detector by using a high frequency focused photoacoustic transmitter.
    Won Baac H; Ling T; Huang SW; Ashkenazi S; Guo LJ
    Appl Phys Lett; 2009 Oct; 95(14):144105. PubMed ID: 19902003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and characterization of acoustic 4f imaging system by using an optical microring ultrasound detector.
    Baac HW; Ling T; Guo LJ
    Proc SPIE Int Soc Opt Eng; 2010 Feb; 7564():75642N. PubMed ID: 20336169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging with concave large-aperture therapeutic ultrasound arrays using conventional synthetic-aperture beamforming.
    Wan Y; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1705-18. PubMed ID: 18986915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic acoustic focusing in photoacoustic transmitter.
    Li Q; Li J; Zhu H; Chen Y; Zhu B; Yu H
    Photoacoustics; 2021 Mar; 21():100224. PubMed ID: 34745880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holographic extraction of plane waves from an ultrasound beam for acoustic characterization of an absorbing layer of finite dimensions.
    Nikolaev DA; Tsysar SA; Khokhlova VA; Kreider W; Sapozhnikov OA
    J Acoust Soc Am; 2021 Jan; 149(1):386. PubMed ID: 33514150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-frequency ultrasound sensors using polymer microring resonators.
    Chao CY; Ashkenazi S; Huang SW; O'Donnell M; Guo LJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 May; 54(5):957-65. PubMed ID: 17523560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Decomposition of a Broadband Pulse Caused by Strong Frequency Dispersion of Sound in Acoustic Metamaterial Superlattice.
    Jin Y; Zubov Y; Yang T; Choi TY; Krokhin A; Neogi A
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel range-verification method using ionoacoustic wave generated from spherical gold markers for particle-beam therapy: a simulation study.
    Takayanagi T; Uesaka T; Kitaoka M; Unlu MB; Umegaki K; Shirato H; Xing L; Matsuura T
    Sci Rep; 2019 Mar; 9(1):4011. PubMed ID: 30850625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical detection threshold of the proton-acoustic range verification technique.
    Ahmad M; Xiang L; Yousefi S; Xing L
    Med Phys; 2015 Oct; 42(10):5735-44. PubMed ID: 26429247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modeling approach to predict acoustic nonlinear field generated by a transmitter with an aluminum lens.
    Fan T; Liu Z; Chen T; Li F; Zhang D
    Med Phys; 2011 Sep; 38(9):5033-9. PubMed ID: 21978047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-ppb NaCl aerosol detection at a distance of 30 meters by femtosecond laser induced plasma spectroscopy.
    Guo J; Zhang Z; Zhang N; Shang B; Xue J; Wang Y; Tao S; Xie B; Guo L; Lin L; Liu W
    Opt Express; 2023 Aug; 31(17):28586-28595. PubMed ID: 37710909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution silicon photonics focused ultrasound transducer with a sub-millimeter aperture.
    Nagli M; Koch J; Hazan Y; Levi A; Ternyak O; Overmeyer L; Rosenthal A
    Opt Lett; 2023 May; 48(10):2668-2671. PubMed ID: 37186736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring a photo-acousto-optic effect for noncontacting photoacoustic sensing.
    Yang BW; Chen HY; Huang YS; Chen HW; Yu HY; Yeh DC
    Appl Opt; 2014 Aug; 53(22):E47-50. PubMed ID: 25090353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy.
    Baac HW; Ok JG; Maxwell A; Lee KT; Chen YC; Hart AJ; Xu Z; Yoon E; Guo LJ
    Sci Rep; 2012; 2():989. PubMed ID: 23251775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable-focus optoacoustic lens with wide dynamic range and long focal length by using a flexible polymer nano-composite membrane.
    Abbasi MA; Faraz M; Joo MG; Son D; Won SM; Ok JG; Park HJ; Baac HW
    Ultrasonics; 2021 Dec; 117():106545. PubMed ID: 34343758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy.
    Bai X; Liang Y; Sun H; Jin L; Ma J; Guan BO; Wang L
    Opt Express; 2017 Jul; 25(15):17616-17626. PubMed ID: 28789254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling laser ultrasound waveforms: The effect of varying pulse duration and material properties.
    Rajagopal S; Cox BT
    J Acoust Soc Am; 2021 Mar; 149(3):2040. PubMed ID: 33765774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.