These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20689723)

  • 1. The Moving Boundary Node Method: A level set-based, finite volume algorithm with applications to cell motility.
    Wolgemuth CW; Zajac M
    J Comput Phys; 2010 Sep; 229(19):7287-7308. PubMed ID: 20689723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational model of cell polarization and motility coupling mechanics and biochemistry.
    Vanderlei B; Feng JJ; Edelstein-Keshet L
    Multiscale Model Simul; 2011 Oct; 9(4):1420-1443. PubMed ID: 22904684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuum model of cell adhesion and migration.
    Kuusela E; Alt W
    J Math Biol; 2009 Jan; 58(1-2):135-61. PubMed ID: 18488227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Semi-Lagrangian Cut Cell Method for Advection-Diffusion Problems with Robin Boundary Conditions in Moving Domains.
    Barrett A; Fogelson AL; Griffith BE
    J Comput Phys; 2022 Jan; 449():. PubMed ID: 34898720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of compact-stencil interpolation algorithms for unstructured mesh finite volume solver.
    Tasri A; Susilawati A
    Heliyon; 2021 Apr; 7(4):e06875. PubMed ID: 33997405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SIMULATING BIOCHEMICAL SIGNALING NETWORKS IN COMPLEX MOVING GEOMETRIES.
    Strychalski W; Adalsteinsson D; Elston TC
    SIAM J Sci Comput; 2010; 32(5):3039-3070. PubMed ID: 24086102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanochemical modeling of neutrophil migration based on four signaling layers, integrin dynamics, and substrate stiffness.
    Feng S; Zhou L; Zhang Y; Lü S; Long M
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1611-1630. PubMed ID: 29968162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A POROELASTIC MODEL FOR CELL CRAWLING INCLUDING MECHANICAL COUPLING BETWEEN CYTOSKELETAL CONTRACTION AND ACTIN POLYMERIZATION.
    Taber LA; Shi Y; Yang L; Bayly PV
    J Mech Mater Struct; 2011; 6(1-4):569-589. PubMed ID: 21765817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolymerization-driven flow in nematode spermatozoa relates crawling speed to size and shape.
    Zajac M; Dacanay B; Mohler WA; Wolgemuth CW
    Biophys J; 2008 May; 94(10):3810-23. PubMed ID: 18227129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-dimensional coupled flow-mass transport model based on an improved unstructured finite volume algorithm.
    Zhou J; Song L; Kursan S; Liu Y
    Environ Res; 2015 May; 139():65-74. PubMed ID: 25686488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local Inverse Mapping Implicit Hole-Cutting Method for Structured Cartesian Overset Grid Assembly.
    Wang J; Wu F; Xu Q; Tan L
    Entropy (Basel); 2023 Feb; 25(3):. PubMed ID: 36981321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conservative algorithm for parabolic problems in domains with moving boundaries.
    Novak IL; Slepchenko BM
    J Comput Phys; 2014 Aug; 270():203-213. PubMed ID: 25067852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stick-slip model for actin-driven cell protrusions, cell polarization, and crawling.
    Sens P
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):24670-24678. PubMed ID: 32958682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion on a Curved Surface Coupled to Diffusion in the Volume: Application to Cell Biology.
    Novak IL; Gao F; Choi YS; Resasco D; Schaff JC; Slepchenko BM
    J Comput Phys; 2007 Oct; 226(2):1271-1290. PubMed ID: 18836520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solving the advection-diffusion equations in biological contexts using the cellular Potts model.
    Dan D; Mueller C; Chen K; Glazier JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041909. PubMed ID: 16383422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zigzag turning preference of freely crawling cells.
    Yang TD; Park JS; Choi Y; Choi W; Ko TW; Lee KJ
    PLoS One; 2011; 6(6):e20255. PubMed ID: 21687729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry.
    Camley BA; Zhao Y; Li B; Levine H; Rappel WJ
    Phys Rev E; 2017 Jan; 95(1-1):012401. PubMed ID: 28208438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moving Particles Through a Finite Element Mesh.
    Peskin AP; Hardin GR
    J Res Natl Inst Stand Technol; 1998; 103(1):77-91. PubMed ID: 28009377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.