BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20689737)

  • 1. Choroidal pigmented lesions imaged by ultra-wide-field scanning laser ophthalmoscopy with two laser wavelengths (Optomap).
    Kernt M; Schaller UC; Stumpf C; Ulbig MW; Kampik A; Neubauer AS
    Clin Ophthalmol; 2010 Jul; 4():829-36. PubMed ID: 20689737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated segmentation for early detection of uveal melanoma.
    Ma J; Iddir SP; Ganesh S; Yi D; Heiferman MJ
    Can J Ophthalmol; 2024 May; ():. PubMed ID: 38768649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multispectral Fundus Photography of Choroidal Nevi With Trans-Palpebral Illumination.
    Rahimi M; Rossi A; Son T; Dadzie AK; Ebrahimi B; Abtahi M; Heiferman MJ; Yao X
    Transl Vis Sci Technol; 2024 Mar; 13(3):25. PubMed ID: 38546980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multispectral Fundus Photography of Choroidal Nevi with Trans-Palpebral Illumination.
    Rahimi M; Rossi A; Son T; Dadzie AK; Ebrahimi B; Abtahi M; Heiferman MJ; Yao X
    medRxiv; 2024 Jan; ():. PubMed ID: 38260269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Study of Ultrasonography and Ultra-Widefield Fundus Photographs for Measurements of the Diameter of Choroidal and Retinal Tumors.
    Wang Q; Yang JY; Wei WB; Yang Q
    Ophthalmol Ther; 2023 Dec; 12(6):3001-3011. PubMed ID: 37603161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Biomarkers Derived from a Novel, Contrast-Free Ultrasound, High-Definition Microvessel Imaging for Differentiating Choroidal Tumors.
    Adusei SA; Sabeti S; Larson NB; Dalvin LA; Fatemi M; Alizad A
    Cancers (Basel); 2024 Jan; 16(2):. PubMed ID: 38254884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is Tumour Thickness Measurement Required for MOLES Scoring of Melanocytic Choroidal Tumours?
    Ching J; AlHarby L; Sagoo MS; Damato B
    Ocul Oncol Pathol; 2023 Aug; 9(1-2):40-47. PubMed ID: 38376089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundus Autofluorescence Imaging in Patients with Choroidal Melanoma.
    Bindewald-Wittich A; Holz FG; Ach T; Fiorentzis M; Bechrakis NE; Willerding GD
    Cancers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progression pattern of myopic maculopathy according to the severity of diffuse chorioretinal atrophy and choroidal thickness.
    Park UC; Lee EK; Yoon CK; Oh BL
    Sci Rep; 2022 Feb; 12(1):3099. PubMed ID: 35197535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-wide field retinal imaging: A wider clinical perspective.
    Kumar V; Surve A; Kumawat D; Takkar B; Azad S; Chawla R; Shroff D; Arora A; Singh R; Venkatesh P
    Indian J Ophthalmol; 2021 Apr; 69(4):824-835. PubMed ID: 33727441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diabetic maculopathy: multicolour and SD-OCT versus fundus photography.
    Kousha O; Delle Fave MM; Cozzi M; Carini E; Pagliarini S
    BMJ Open Ophthalmol; 2021; 6(1):e000514. PubMed ID: 33681471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between fundus autofluorescence and visual function in patients with cone-rod dystrophy.
    Kanda S; Hara T; Fujino R; Azuma K; Soga H; Asaoka R; Obata R; Inoue T
    Sci Rep; 2021 Jan; 11(1):1911. PubMed ID: 33479408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical application of ultra-widefield fundus autofluorescence.
    Xu A; Chen C
    Int Ophthalmol; 2021 Feb; 41(2):727-741. PubMed ID: 33040254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Comparison of Fundus Images by 2 Ultra-Widefield Fundus Cameras.
    Chen A; Dang S; Chung MM; Ramchandran RS; Bessette AP; DiLoreto DA; Kleinman DM; Sridhar J; Wykoff CC; Kuriyan AE
    Ophthalmol Retina; 2021 May; 5(5):450-457. PubMed ID: 32866664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Mydriatic Ultra-Wide Field Imaging Versus Dilated Fundus Exam and Intraoperative Findings for Assessment of Rhegmatogenous Retinal Detachment.
    Abadia B; Desco MC; Mataix J; Palacios E; Navea A; Calvo P; Ferreras A
    Brain Sci; 2020 Aug; 10(8):. PubMed ID: 32764520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma Knife Radiosurgery for Uveal Melanoma: A Retrospective Review of Clinical Complications in a Tertiary Referral Center.
    Modorati GM; Dagan R; Mikkelsen LH; Andreasen S; Ferlito A; Bandello F
    Ocul Oncol Pathol; 2020 Mar; 6(2):115-122. PubMed ID: 32258019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Wrap
    Cicinelli MV; Marchese A; Bandello F; Modorati GM
    Ocul Oncol Pathol; 2020 Jan; 6(1):20-24. PubMed ID: 32002400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widefield imaging of retinal and choroidal tumors.
    Callaway NF; Mruthyunjaya P
    Int J Retina Vitreous; 2019; 5(Suppl 1):49. PubMed ID: 31890289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-wide-field imaging of choroidal melanoma before and after proton beam radiation therapy.
    Psomiadi A; Haas G; Edlinger M; Bechrakis NE; Blatsios G
    Eur J Ophthalmol; 2020 Nov; 30(6):1397-1402. PubMed ID: 31466473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative comparisons of ultra-widefield images of model eye obtained with Optos
    Kato Y; Inoue M; Hirakata A
    BMC Ophthalmol; 2019 May; 19(1):115. PubMed ID: 31101026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.