BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2069015)

  • 1. Bioactivation of xenobiotics by flavin-containing monooxygenases.
    Ziegler DM
    Adv Exp Med Biol; 1991; 283():41-50. PubMed ID: 2069015
    [No Abstract]   [Full Text] [Related]  

  • 2. Measurements of flavin-containing monooxygenase (FMO) activities.
    Rose RL
    Curr Protoc Toxicol; 2002 Nov; Chapter 4():Unit4.9. PubMed ID: 20945301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Flavoprotein Monooxygenases as Mimics of Mammalian Flavin-Containing Monooxygenases for the Enantioselective Preparation of Drug Metabolites.
    Gul T; Krzek M; Permentier HP; Fraaije MW; Bischoff R
    Drug Metab Dispos; 2016 Aug; 44(8):1270-6. PubMed ID: 26984198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Going Beyond Common Drug Metabolizing Enzymes: Case Studies of Biotransformation Involving Aldehyde Oxidase, γ-Glutamyl Transpeptidase, Cathepsin B, Flavin-Containing Monooxygenase, and ADP-Ribosyltransferase.
    Fan PW; Zhang D; Halladay JS; Driscoll JP; Khojasteh SC
    Drug Metab Dispos; 2016 Aug; 44(8):1253-61. PubMed ID: 27117704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of aquatic organisms as models to determine the in vivo contribution of flavin-containing monooxygenases in xenobiotic biotransformation.
    Schlenk D
    Mol Mar Biol Biotechnol; 1995 Dec; 4(4):323-30. PubMed ID: 8541983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of berberine on the recovery of rat liver xenobiotic-metabolizing enzymes after partial hepatectomy].
    Zverinsky IV; Zverinskaya HG; Sutsko IP; Telegin PG; Shlyahtun AG
    Biomed Khim; 2015; 61(3):381-3. PubMed ID: 26215416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of flavin-containing monooxygenases in non-mammalian eukaryotic organisms.
    Schlenk D
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1998 Nov; 121(1-3):185-95. PubMed ID: 9972460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism.
    Krueger SK; Williams DE
    Pharmacol Ther; 2005 Jun; 106(3):357-87. PubMed ID: 15922018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavin adenine dinucleotide--dependent monooxygenase: its role in the sulfoxidation of pesticides in mammals.
    Hajjar NP; Hodgson E
    Science; 1980 Sep; 209(4461):1134-6. PubMed ID: 7403873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mammalian flavin-containing monooxygenases: molecular characterization and regulation of expression.
    Hines RN; Cashman JR; Philpot RM; Williams DE; Ziegler DM
    Toxicol Appl Pharmacol; 1994 Mar; 125(1):1-6. PubMed ID: 8128486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular identification and expression of two non-P450 enzymes, monoamine oxidase A and flavin-containing monooxygenase 2, involved in phase I of xenobiotic biotransformation in the Pacific oyster, Crassostrea gigas.
    Boutet I; Tanguy A; Moraga D
    Biochim Biophys Acta; 2004 Jul; 1679(1):29-36. PubMed ID: 15245914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavin-containing monooxygenases: enzymes adapted for multisubstrate specificity.
    Ziegler DM
    Trends Pharmacol Sci; 1990 Aug; 11(8):321-4. PubMed ID: 2203193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADPH-dependent, regioselective S-oxidation of a thionosulfur- and thioether-containing xenobiotic, diethyldithiocarbamate methyl ester by rat liver microsomes.
    Madan A; Faiman MD
    Drug Metab Dispos; 1994; 22(2):324-30. PubMed ID: 8013289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistically-based QSARs to describe metabolic constants in mammals.
    Pirovano A; Huijbregts MA; Ragas AM; Veltman K; Hendriks AJ
    Altern Lab Anim; 2014 Mar; 42(1):59-69. PubMed ID: 24773489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanisms of bioactivation of xenobiotics under the influence of enzymatic systems of the body].
    Zholdakova ZI; Kharchevnikova NV
    Vestn Ross Akad Med Nauk; 2002; (8):44-9. PubMed ID: 12212380
    [No Abstract]   [Full Text] [Related]  

  • 16. Enantioselective S-oxygenation of 2-aryl-1,3-dithiolanes by rabbit lung enzyme preparations.
    Cashman JR; Williams DE
    Mol Pharmacol; 1990 Feb; 37(2):333-9. PubMed ID: 2304456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in oxygenase-catalyzed biotransformations.
    Urlacher VB; Schmid RD
    Curr Opin Chem Biol; 2006 Apr; 10(2):156-61. PubMed ID: 16488653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [GSH and GSH S-transferase involvement in the bioactivation of xenobiotics. Carcinogen conjugation with reactive metabolites].
    Jerca L; Filip F; Alexa ID; Jerca O
    Rev Med Chir Soc Med Nat Iasi; 1995; 99(3-4):23-8. PubMed ID: 9455345
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of cytochrome P-450 and related enzymes in the pulmonary metabolism of xenobiotics.
    Philpot RM; Smith BR
    Environ Health Perspect; 1984 Apr; 55():359-67. PubMed ID: 6376107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione-dependent bioactivation and renal toxicity of xenobiotics.
    Dekant W
    Recent Results Cancer Res; 1997; 143():77-87. PubMed ID: 8912413
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.