These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 20690184)

  • 1. Intracellular tension in periosteum/perichondrium cells regulates long bone growth.
    Foolen J; van Donkelaar CC; Ito K
    J Orthop Res; 2011 Jan; 29(1):84-91. PubMed ID: 20690184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of endochondral cartilage growth in the developing avian limb: cooperative involvement of perichondrium and periosteum.
    Di Nino DL; Long F; Linsenmayer TF
    Dev Biol; 2001 Dec; 240(2):433-42. PubMed ID: 11784074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple mechanisms of perichondrial regulation of cartilage growth.
    Di Nino DL; Crochiere ML; Linsenmayer TF
    Dev Dyn; 2002 Nov; 225(3):250-9. PubMed ID: 12412007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual periosteum tension is insufficient to directly modulate bone growth.
    Foolen J; van Donkelaar CC; Murphy P; Huiskes R; Ito K
    J Biomech; 2009 Jan; 42(2):152-7. PubMed ID: 19058805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perichondrial-mediated TGF-beta regulation of cartilage growth in avian long bone development.
    Crochiere ML; Kubilus JK; Linsenmayer TF
    Int J Dev Biol; 2008; 52(1):63-70. PubMed ID: 18033673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syndecan-3, tenascin-C, and the development of cartilaginous skeletal elements and joints in chick limbs.
    Koyama E; Leatherman JL; Shimazu A; Nah HD; Pacifici M
    Dev Dyn; 1995 Jun; 203(2):152-62. PubMed ID: 7544653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The perichondrium plays an important role in mediating the effects of TGF-beta1 on endochondral bone formation.
    Alvarez J; Horton J; Sohn P; Serra R
    Dev Dyn; 2001 Jul; 221(3):311-21. PubMed ID: 11458391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells.
    Park J; Gelse K; Frank S; von der Mark K; Aigner T; Schneider H
    J Gene Med; 2006 Jan; 8(1):112-25. PubMed ID: 16142704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of a previously undetected region between the perichondrium and periosteum of the developing avian limb.
    Crochiere ML; Kubilus JK; Linsenmayer TF
    Dev Biol; 2006 Nov; 299(2):505-16. PubMed ID: 16978598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen orientation in periosteum and perichondrium is aligned with preferential directions of tissue growth.
    Foolen J; van Donkelaar C; Nowlan N; Murphy P; Huiskes R; Ito K
    J Orthop Res; 2008 Sep; 26(9):1263-8. PubMed ID: 18404654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periosteal biaxial residual strains correlate with bone specific growth rates in chick embryos.
    Chen JC; Zhao B; Longaker MT; Helms JA; Carter DR
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):453-61. PubMed ID: 18608339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of IGFBP2, IGF-I and IGF-II in regulating long bone growth.
    Fisher MC; Meyer C; Garber G; Dealy CN
    Bone; 2005 Dec; 37(6):741-50. PubMed ID: 16183342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of matrix proteins in perichondrium and periosteum during the incorporation of Meckel's cartilage into ossifying mandible in midterm human fetuses: an immunohistochemical study.
    Shibata S; Sakamoto Y; Yokohama-Tamaki T; Murakami G; Cho BH
    Anat Rec (Hoboken); 2014 Jul; 297(7):1208-17. PubMed ID: 24700703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive regulation of endochondral cartilage growth by perichondrial and periosteal calcitonin.
    Di Nino DL; Linsenmayer TF
    Endocrinology; 2003 May; 144(5):1979-83. PubMed ID: 12697705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The timing of the onset of osteogenesis in the tibia of the embryonic chick.
    Scott-Savage P; Hall BK
    J Morphol; 1979 Dec; 162(3):453-63. PubMed ID: 529294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of periosteal tension in the growth of long bones.
    Warrell E; Taylor JF
    J Anat; 1979 Jan; 128(Pt 1):179-84. PubMed ID: 422478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro studies on skeletogenic potential of membrane bone periosteal cells.
    Thorogood P
    J Embryol Exp Morphol; 1979 Dec; 54():185-207. PubMed ID: 528865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of transplants of rat humerus following circumferential division of the periosteum.
    Harkness EM; Trotter WD
    J Anat; 1978 Jun; 126(Pt 2):275-89. PubMed ID: 353011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DL-penicillamine induced alteration of elastic fibers of periosteum-perichondrium and associated growth inhibition: an experimental study.
    Gigante A; Chillemi C; Quaglino D; Miselli M; Pasquali-Ronchetti I
    J Orthop Res; 2001 May; 19(3):398-404. PubMed ID: 11398852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.