These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20690587)

  • 41. Mechanistic characterization of UDP-glucuronic acid 4-epimerase.
    Borg AJE; Dennig A; Weber H; Nidetzky B
    FEBS J; 2021 Feb; 288(4):1163-1178. PubMed ID: 32645249
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure of a biliverdin IXalpha reductase enzyme-cofactor complex.
    Whitby FG; Phillips JD; Hill CP; McCoubrey W; Maines MD
    J Mol Biol; 2002 Jun; 319(5):1199-210. PubMed ID: 12079357
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli.
    Thoden JB; Hegeman AD; Wesenberg G; Chapeau MC; Frey PA; Holden HM
    Biochemistry; 1997 May; 36(21):6294-304. PubMed ID: 9174344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative analysis of two UDP-glucose dehydrogenases in Pseudomonas aeruginosa PAO1.
    Hung RJ; Chien HS; Lin RZ; Lin CT; Vatsyayan J; Peng HL; Chang HY
    J Biol Chem; 2007 Jun; 282(24):17738-48. PubMed ID: 17442666
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of two enzymes from Psychrobacter cryohalolentis that are required for the biosynthesis of an unusual diacetamido-d-sugar.
    Linehan MP; Thoden JB; Holden HM
    J Biol Chem; 2021; 296():100463. PubMed ID: 33639157
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The X-ray structure of Escherichia coli enoyl reductase with bound NAD+ at 2.1 A resolution.
    Baldock C; Rafferty JB; Stuitje AR; Slabas AR; Rice DW
    J Mol Biol; 1998 Dec; 284(5):1529-46. PubMed ID: 9878369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure of the O-polysaccharide of Pragia fontium 27480 containing 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid.
    Valueva OA; Zdorovenko EL; Kachala VV; Varbanets LD; Arbatsky NP; Shubchynskyy VV; Shashkov AS; Knirel YA
    Carbohydr Res; 2011 Jan; 346(1):146-9. PubMed ID: 21129734
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis.
    Argyrou A; Blanchard JS; Palfey BA
    Biochemistry; 2002 Dec; 41(49):14580-90. PubMed ID: 12463758
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accommodation of GDP-linked sugars in the active site of GDP-perosamine synthase.
    Cook PD; Carney AE; Holden HM
    Biochemistry; 2008 Oct; 47(40):10685-93. PubMed ID: 18795799
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural and biochemical insights into nucleotide-rhamnose synthase/epimerase-reductase from Arabidopsis thaliana.
    Han X; Qian L; Zhang L; Liu X
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1476-86. PubMed ID: 26116145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochemical studies on WbcA, a sugar epimerase from Yersinia enterocolitica.
    Salinger AJ; Brown HA; Thoden JB; Holden HM
    Protein Sci; 2015 Oct; 24(10):1633-9. PubMed ID: 26174084
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the structure and function of Escherichia coli YjhC: An oxidoreductase involved in bacterial sialic acid metabolism.
    Horne CR; Kind L; Davies JS; Dobson RCJ
    Proteins; 2020 May; 88(5):654-668. PubMed ID: 31697432
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The crystal structure of ADP-L-glycero-D-mannoheptose 6-epimerase: catalysis with a twist.
    Deacon AM; Ni YS; Coleman WG; Ealick SE
    Structure; 2000 May; 8(5):453-62. PubMed ID: 10896473
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The importance of binding energy in catalysis of hydride transfer by UDP-galactose 4-epimerase: a 13C and 15N NMR and kinetic study.
    Burke JR; Frey PA
    Biochemistry; 1993 Dec; 32(48):13220-30. PubMed ID: 8241177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure and catalytic mechanism of glucosamine 6-phosphate deaminase from Escherichia coli at 2.1 A resolution.
    Oliva G; Fontes MR; Garratt RC; Altamirano MM; Calcagno ML; Horjales E
    Structure; 1995 Dec; 3(12):1323-32. PubMed ID: 8747459
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence from Raman spectroscopy that InhA, the mycobacterial enoyl reductase, modulates the conformation of the NADH cofactor to promote catalysis.
    Bell AF; Stratton CF; Zhang X; Novichenok P; Jaye AA; Nair PA; Parikh S; Rawat R; Tonge PJ
    J Am Chem Soc; 2007 May; 129(20):6425-31. PubMed ID: 17472376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes.
    Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ
    Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural and genetic characterization of the Escherichia coli O180 O antigen and identification of a UDP-GlcNAc 6-dehydrogenase.
    Wang Q; Perepelov AV; Beutin L; Senchenkova SN; Xu Y; Shashkov AS; Ding P; Knirel YA; Feng L
    Glycobiology; 2012 Oct; 22(10):1321-31. PubMed ID: 22730467
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The molecular architecture of galactose mutarotase/UDP-galactose 4-epimerase from Saccharomyces cerevisiae.
    Thoden JB; Holden HM
    J Biol Chem; 2005 Jun; 280(23):21900-7. PubMed ID: 15795221
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acetamido sugar biosynthesis in the Euryarchaea.
    Namboori SC; Graham DE
    J Bacteriol; 2008 Apr; 190(8):2987-96. PubMed ID: 18263721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.