These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 20690630)
1. Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase. Lambeck I; Chi JC; Krizowski S; Mueller S; Mehlmer N; Teige M; Fischer K; Schwarz G Biochemistry; 2010 Sep; 49(37):8177-86. PubMed ID: 20690630 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical and kinetic analysis of electron-transfer reactions of Chlorella nitrate reductase. Kay CJ; Solomonson LP; Barber MJ Biochemistry; 1991 Dec; 30(48):11445-50. PubMed ID: 1742283 [TBL] [Abstract][Full Text] [Related]
3. Biochemical characterization of molybdenum cofactor-free nitrate reductase from Neurospora crassa. Ringel P; Krausze J; van den Heuvel J; Curth U; Pierik AJ; Herzog S; Mendel RR; Kruse T J Biol Chem; 2013 May; 288(20):14657-14671. PubMed ID: 23539622 [TBL] [Abstract][Full Text] [Related]
4. Molecular mechanism of 14-3-3 protein-mediated inhibition of plant nitrate reductase. Lambeck IC; Fischer-Schrader K; Niks D; Roeper J; Chi JC; Hille R; Schwarz G J Biol Chem; 2012 Feb; 287(7):4562-71. PubMed ID: 22170050 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and bacterial expression of a gene encoding the heme domain of assimilatory nitrate reductase. Barber MJ; Desai SK; Marohnic CC; Hernandez HH; Pollock VV Arch Biochem Biophys; 2002 Jun; 402(1):38-50. PubMed ID: 12051681 [TBL] [Abstract][Full Text] [Related]
6. Dual binding of 14-3-3 protein regulates Arabidopsis nitrate reductase activity. Chi JC; Roeper J; Schwarz G; Fischer-Schrader K J Biol Inorg Chem; 2015 Mar; 20(2):277-86. PubMed ID: 25578809 [TBL] [Abstract][Full Text] [Related]
7. Identification in vitro of a post-translational regulatory site in the hinge 1 region of Arabidopsis nitrate reductase. Su W; Huber SC; Crawford NM Plant Cell; 1996 Mar; 8(3):519-27. PubMed ID: 8721753 [TBL] [Abstract][Full Text] [Related]
11. Bacterial expression of the molybdenum domain of assimilatory nitrate reductase: production of both the functional molybdenum-containing domain and the nonfunctional tungsten analog. Pollock VV; Conover RC; Johnson MK; Barber MJ Arch Biochem Biophys; 2002 Jul; 403(2):237-48. PubMed ID: 12139973 [TBL] [Abstract][Full Text] [Related]
12. Identification of two tungstate-sensitive molybdenum cofactor mutants, chl2 and chl7, of Arabidopsis thaliana. LaBrie ST; Wilkinson JQ; Tsay YF; Feldmann KA; Crawford NM Mol Gen Genet; 1992 May; 233(1-2):169-76. PubMed ID: 1534867 [TBL] [Abstract][Full Text] [Related]
13. Ser-534 in the hinge 1 region of Arabidopsis nitrate reductase is conditionally required for binding of 14-3-3 proteins and in vitro inhibition. Kanamaru K; Wang R; Su W; Crawford NM J Biol Chem; 1999 Feb; 274(7):4160-5. PubMed ID: 9933611 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic and kinetic characterization of the recombinant cytochrome c reductase fragment of nitrate reductase. Identification of the rate-limiting catalytic step. Ratnam K; Shiraishi N; Campbell WH; Hille R J Biol Chem; 1997 Jan; 272(4):2122-8. PubMed ID: 8999912 [TBL] [Abstract][Full Text] [Related]
15. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Bachmann M; Shiraishi N; Campbell WH; Yoo BC; Harmon AC; Huber SC Plant Cell; 1996 Mar; 8(3):505-17. PubMed ID: 8721752 [TBL] [Abstract][Full Text] [Related]
17. Kinetic studies of a soluble alpha beta complex of nitrate reductase A from Escherichia coli. Use of various alpha beta mutants with altered beta subunits. Buc J; Santini CL; Blasco F; Giordani R; Cárdenas ML; Chippaux M; Cornish-Bowden A; Giordano G Eur J Biochem; 1995 Dec; 234(3):766-72. PubMed ID: 8575433 [TBL] [Abstract][Full Text] [Related]