These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 20690630)

  • 21. Purification and characterization of the assimilatory nitrate reductase of Azotobacter vinelandii.
    Gangeswaran R; Lowe DJ; Eady RR
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):335-42. PubMed ID: 8380991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of raphidophyte assimilatory nitrate reductase reveals unique domain architecture incorporating a 2/2 hemoglobin.
    Stewart JJ; Coyne KJ
    Plant Mol Biol; 2011 Dec; 77(6):565-75. PubMed ID: 22038092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site.
    Fischer K; Barbier GG; Hecht HJ; Mendel RR; Campbell WH; Schwarz G
    Plant Cell; 2005 Apr; 17(4):1167-79. PubMed ID: 15772287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assimilatory nitrate reductase: lysine 741 participates in pyridine nucleotide binding via charge complementarity.
    Barber MJ; Desai SK; Marohnic CC
    Arch Biochem Biophys; 2001 Oct; 394(1):99-110. PubMed ID: 11566032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deletion of the nitrate reductase N-terminal domain still allows binding of 14-3-3 proteins but affects their inhibitory properties.
    Provan F; Aksland LM; Meyer C; Lillo C
    Plant Physiol; 2000 Jun; 123(2):757-64. PubMed ID: 10859205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a regulatory phosphorylation site in the hinge 1 region of nitrate reductase from spinach (Spinacea oleracea) leaves.
    Douglas P; Morrice N; MacKintosh C
    FEBS Lett; 1995 Dec; 377(2):113-7. PubMed ID: 8543031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A recently evolved diflavin-containing monomeric nitrate reductase is responsible for highly efficient bacterial nitrate assimilation.
    Tan W; Liao TH; Wang J; Ye Y; Wei YC; Zhou HK; Xiao Y; Zhi XY; Shao ZH; Lyu LD; Zhao GP
    J Biol Chem; 2020 Apr; 295(15):5051-5066. PubMed ID: 32111737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of Chlorella nitrate reductase: control of enzyme activity and immunoreactive protein levels by ammonia.
    Zeiler KG; Solomonson LP
    Arch Biochem Biophys; 1989 Feb; 269(1):46-54. PubMed ID: 2916847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NITRATE REDUCTASE STRUCTURE, FUNCTION AND REGULATION: Bridging the Gap between Biochemistry and Physiology.
    Campbell WH
    Annu Rev Plant Physiol Plant Mol Biol; 1999 Jun; 50():277-303. PubMed ID: 15012211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A glycine to aspartic acid change in the MoCo domain of nitrate reductase reduces both activity and phosphorylation levels in Arabidopsis.
    LaBrie ST; Crawford NM
    J Biol Chem; 1994 May; 269(20):14497-501. PubMed ID: 8182055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa.
    Kalimuthu P; Ringel P; Kruse T; Bernhardt PV
    Biochim Biophys Acta; 2016 Sep; 1857(9):1506-1513. PubMed ID: 27060250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-translational control of nitrate reductase activity responding to light and photosynthesis evolved already in the early vascular plants.
    Nemie-Feyissa D; Królicka A; Førland N; Hansen M; Heidari B; Lillo C
    J Plant Physiol; 2013 May; 170(7):662-7. PubMed ID: 23395536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and function of eukaryotic NAD(P)H:nitrate reductase.
    Campbell WH
    Cell Mol Life Sci; 2001 Feb; 58(2):194-204. PubMed ID: 11289301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorylation and 14-3-3 binding of Arabidopsis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.
    Kulma A; Villadsen D; Campbell DG; Meek SE; Harthill JE; Nielsen TH; MacKintosh C
    Plant J; 2004 Mar; 37(5):654-67. PubMed ID: 14871307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molybdenum cofactor: a compound in the in vitro activation of both nitrate reductase and trimethylamine-N-oxide reductase activities in Escherichia coli K12.
    Silvestro A; Pommier J; Giordano G
    Biochim Biophys Acta; 1986 Aug; 872(3):243-52. PubMed ID: 3524687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein phosphatase 2A B55 and A regulatory subunits interact with nitrate reductase and are essential for nitrate reductase activation.
    Heidari B; Matre P; Nemie-Feyissa D; Meyer C; Rognli OA; Møller SG; Lillo C
    Plant Physiol; 2011 May; 156(1):165-72. PubMed ID: 21436382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli.
    Blasco F; Dos Santos JP; Magalon A; Frixon C; Guigliarelli B; Santini CL; Giordano G
    Mol Microbiol; 1998 May; 28(3):435-47. PubMed ID: 9632249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of wild-type and mutant plant nitrate reductase expressed in the methylotrophic yeast Pichia pastoris.
    Su W; Mertens JA; Kanamaru K; Campbell WH; Crawford NM
    Plant Physiol; 1997 Nov; 115(3):1135-43. PubMed ID: 9390442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism and importance of post-translational regulation of nitrate reductase.
    Lillo C; Meyer C; Lea US; Provan F; Oltedal S
    J Exp Bot; 2004 Jun; 55(401):1275-82. PubMed ID: 15107452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase.
    Quinn GB; Trimboli AJ; Prosser IM; Barber MJ
    Arch Biochem Biophys; 1996 Mar; 327(1):151-60. PubMed ID: 8615685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.