These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 20690695)
1. In silico prediction of the melting points of ionic liquids from thermodynamic considerations: a case study on 67 salts with a melting point range of 337 degrees C. Preiss U; Bulut S; Krossing I J Phys Chem B; 2010 Sep; 114(34):11133-40. PubMed ID: 20690695 [TBL] [Abstract][Full Text] [Related]
2. Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. Krossing I; Slattery JM; Daguenet C; Dyson PJ; Oleinikova A; Weingärtner H J Am Chem Soc; 2006 Oct; 128(41):13427-34. PubMed ID: 17031955 [TBL] [Abstract][Full Text] [Related]
3. Temperature-dependent prediction of the liquid entropy of ionic liquids. Preiss U; Emel'yanenko VN; Verevkin SP; Himmel D; Paulechka YU; Krossing I Chemphyschem; 2010 Nov; 11(16):3425-31. PubMed ID: 20973025 [TBL] [Abstract][Full Text] [Related]
4. Going full circle: phase-transition thermodynamics of ionic liquids. Preiss U; Verevkin SP; Koslowski T; Krossing I Chemistry; 2011 May; 17(23):6508-17. PubMed ID: 21538602 [TBL] [Abstract][Full Text] [Related]
5. A COSMO-RS based guide to analyze/quantify the polarity of ionic liquids and their mixtures with organic cosolvents. Palomar J; Torrecilla JS; Lemus J; Ferro VR; Rodríguez F Phys Chem Chem Phys; 2010 Feb; 12(8):1991-2000. PubMed ID: 20145869 [TBL] [Abstract][Full Text] [Related]
6. Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride. Jayaraman S; Maginn EJ J Chem Phys; 2007 Dec; 127(21):214504. PubMed ID: 18067361 [TBL] [Abstract][Full Text] [Related]
7. Is universal, simple melting point prediction possible? Preiss UP; Beichel W; Erle AM; Paulechka YU; Krossing I Chemphyschem; 2011 Nov; 12(16):2959-72. PubMed ID: 21956860 [TBL] [Abstract][Full Text] [Related]
8. In silico predictions of the temperature-dependent viscosities and electrical conductivities of functionalized and nonfunctionalized ionic liquids. Eiden P; Bulut S; Köchner T; Friedrich C; Schubert T; Krossing I J Phys Chem B; 2011 Jan; 115(2):300-9. PubMed ID: 21138303 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic stability of the 5' dangling-ended DNA hairpins formed from sequences 5'-(XY)2GGATAC(T)4GTATCC-3', where X, Y = A, T, G, C. Doktycz MJ; Paner TM; Amaratunga M; Benight AS Biopolymers; 1990; 30(7-8):829-45. PubMed ID: 2275982 [TBL] [Abstract][Full Text] [Related]
11. Melting behavior and ionic conductivity in hydrophobic ionic liquids. Kunze M; Montanino M; Appetecchi GB; Jeong S; Schönhoff M; Winter M; Passerini S J Phys Chem A; 2010 Feb; 114(4):1776-82. PubMed ID: 20058901 [TBL] [Abstract][Full Text] [Related]
12. A simple physical model for the simultaneous rationalisation of melting points and heat capacities of ionic liquids. Zvereva EE; Katsyuba SA; Dyson PJ Phys Chem Chem Phys; 2010 Nov; 12(41):13780-7. PubMed ID: 20852767 [TBL] [Abstract][Full Text] [Related]
13. Anion and cation effects on imidazolium salt melting points: a descriptor modelling study. López-Martin I; Burello E; Davey PN; Seddon KR; Rothenberg G Chemphyschem; 2007 Apr; 8(5):690-5. PubMed ID: 17335109 [TBL] [Abstract][Full Text] [Related]
14. Fidelity of binding of the guanidinium nucleic acid (DNG) d(Tg)4-T-azido with short strand DNA oligomers (A5G3A5, GA4G3A4G, G2A3G3A3G2, G2A2G5A2G2). A kinetic and thermodynamic study. Blaskó A; Minyat EE; Dempcy RO; Bruice TC Biochemistry; 1997 Jun; 36(25):7821-31. PubMed ID: 9201925 [TBL] [Abstract][Full Text] [Related]
15. COSMOfrag: a novel tool for high-throughput ADME property prediction and similarity screening based on quantum chemistry. Hornig M; Klamt A J Chem Inf Model; 2005; 45(5):1169-77. PubMed ID: 16180894 [TBL] [Abstract][Full Text] [Related]
16. Mutual solubilities of water and hydrophobic ionic liquids. Freire MG; Neves CM; Carvalho PJ; Gardas RL; Fernandes AM; Marrucho IM; Santos LM; Coutinho JA J Phys Chem B; 2007 Nov; 111(45):13082-9. PubMed ID: 17958353 [TBL] [Abstract][Full Text] [Related]
17. Predicting the critical micelle concentrations of aqueous solutions of ionic liquids and other ionic surfactants. Preiss U; Jungnickel C; Thöming J; Krossing I; Łuczak J; Diedenhofen M; Klamt A Chemistry; 2009 Sep; 15(35):8880-5. PubMed ID: 19630011 [TBL] [Abstract][Full Text] [Related]
18. A density functional theory based approach for predicting melting points of ionic liquids. Chen L; Bryantsev VS Phys Chem Chem Phys; 2017 Feb; 19(5):4114-4124. PubMed ID: 28111666 [TBL] [Abstract][Full Text] [Related]
19. Prediction of aqueous solubility of drugs and pesticides with COSMO-RS. Klamt A; Eckert F; Hornig M; Beck ME; Bürger T J Comput Chem; 2002 Jan; 23(2):275-81. PubMed ID: 11924739 [TBL] [Abstract][Full Text] [Related]
20. Exhaustive QSPR studies of a large diverse set of ionic liquids: how accurately can we predict melting points? Varnek A; Kireeva N; Tetko IV; Baskin II; Solov'ev VP J Chem Inf Model; 2007; 47(3):1111-22. PubMed ID: 17381081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]