BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20691395)

  • 21. Inconsistencies of genome annotations in apicomplexan parasites revealed by 5'-end-one-pass and full-length sequences of oligo-capped cDNAs.
    Wakaguri H; Suzuki Y; Sasaki M; Sugano S; Watanabe J
    BMC Genomics; 2009 Jul; 10():312. PubMed ID: 19602295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Malaria and other Apicomplexans: the "plant" connection.
    Wilson RJ; Williamson DH; Preiser P
    Infect Agents Dis; 1994 Feb; 3(1):29-37. PubMed ID: 7952925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites.
    Gordon JL; Sibley LD
    BMC Genomics; 2005 Dec; 6():179. PubMed ID: 16343347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a Gregarine and Cryptosporidium.
    Templeton TJ; Enomoto S; Chen WJ; Huang CG; Lancto CA; Abrahamsen MS; Zhu G
    Mol Biol Evol; 2010 Feb; 27(2):235-48. PubMed ID: 19778951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Jumbled genomes: missing Apicomplexan synteny.
    DeBarry JD; Kissinger JC
    Mol Biol Evol; 2011 Oct; 28(10):2855-71. PubMed ID: 21504890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome microsatellite diversity within the Apicomplexa phylum.
    Isaza JP; Alzate JF
    Mol Genet Genomics; 2016 Dec; 291(6):2117-2129. PubMed ID: 27590734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amoebozoa possess lineage-specific globin gene repertoires gained by individual horizontal gene transfers.
    Dröge J; Buczek D; Suzuki Y; Makałowski W
    Int J Biol Sci; 2014; 10(7):689-701. PubMed ID: 25013378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences.
    Carreno RA; Martin DS; Barta JR
    Parasitol Res; 1999 Nov; 85(11):899-904. PubMed ID: 10540950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes.
    Escalante AA; Ayala FJ
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):5793-7. PubMed ID: 7597031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
    Janouskovec J; Horák A; Oborník M; Lukes J; Keeling PJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10949-54. PubMed ID: 20534454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lateral transfer at the gene and subgenic levels in the evolution of eukaryotic enolase.
    Keeling PJ; Palmer JD
    Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10745-50. PubMed ID: 11526220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa.
    Klinger CM; Klute MJ; Dacks JB
    PLoS One; 2013; 8(9):e76278. PubMed ID: 24086721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diversity of extracellular proteins during the transition from the 'proto-apicomplexan' alveolates to the apicomplexan obligate parasites.
    Templeton TJ; Pain A
    Parasitology; 2016 Jan; 143(1):1-17. PubMed ID: 26585326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plastids are widespread and ancient in parasites of the phylum Apicomplexa.
    Lang-Unnasch N; Reith ME; Munholland J; Barta JR
    Int J Parasitol; 1998 Nov; 28(11):1743-54. PubMed ID: 9846612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of the Apicomplexa: where are we now?
    Morrison DA
    Trends Parasitol; 2009 Aug; 25(8):375-82. PubMed ID: 19635681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes.
    Kwong WK; Del Campo J; Mathur V; Vermeij MJA; Keeling PJ
    Nature; 2019 Apr; 568(7750):103-107. PubMed ID: 30944491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in the application of genetic manipulation methods to apicomplexan parasites.
    Suarez CE; Bishop RP; Alzan HF; Poole WA; Cooke BM
    Int J Parasitol; 2017 Oct; 47(12):701-710. PubMed ID: 28893636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Why the -omic future of Apicomplexa should include gregarines.
    Boisard J; Florent I
    Biol Cell; 2020 Jun; 112(6):173-185. PubMed ID: 32176937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in Apicomplexans.
    Rooney AP
    Mol Biol Evol; 2004 Sep; 21(9):1704-11. PubMed ID: 15175411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epigenetics in Apicomplexa: control of gene expression during cell cycle progression, differentiation and antigenic variation.
    Hakimi MA; Deitsch KW
    Curr Opin Microbiol; 2007 Aug; 10(4):357-62. PubMed ID: 17719264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.