BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20691395)

  • 41. Molecular phylogenetics of eimeriid coccidia (Eimeriidae, Eimeriorina, Apicomplexa, Alveolata): A preliminary multi-gene and multi-genome approach.
    Ogedengbe JD; Ogedengbe ME; Hafeez MA; Barta JR
    Parasitol Res; 2015 Nov; 114(11):4149-60. PubMed ID: 26319519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The protozoan parasite Toxoplasma gondii expresses two functional plant-like glycolytic enzymes. Implications for evolutionary origin of apicomplexans.
    Dzierszinski F; Popescu O; Toursel C; Slomianny C; Yahiaoui B; Tomavo S
    J Biol Chem; 1999 Aug; 274(35):24888-95. PubMed ID: 10455162
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The origins of apicomplexan sequence innovation.
    Wasmuth J; Daub J; Peregrín-Alvarez JM; Finney CA; Parkinson J
    Genome Res; 2009 Jul; 19(7):1202-13. PubMed ID: 19363216
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes.
    Tripathi LP; Sowdhamini R
    BMC Genomics; 2008 Nov; 9():549. PubMed ID: 19019219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The parasite specific substitution matrices improve the annotation of apicomplexan proteins.
    Ali J; Thummala SR; Ranjan A
    BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S19. PubMed ID: 23281791
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mining the Plasmodium genome database to define organellar function: what does the apicoplast do?
    Roos DS; Crawford MJ; Donald RG; Fraunholz M; Harb OS; He CY; Kissinger JC; Shaw MK; Striepen B
    Philos Trans R Soc Lond B Biol Sci; 2002 Jan; 357(1417):35-46. PubMed ID: 11839180
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Post-genomics resources and tools for studying apicomplexan metabolism.
    Hung SS; Parkinson J
    Trends Parasitol; 2011 Mar; 27(3):131-40. PubMed ID: 21145790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phylogeny of the large extrachromosomal DNA of organisms in the phylum Apicomplexa.
    Egea N; Lang-Unnasch N
    J Eukaryot Microbiol; 1995; 42(6):679-84. PubMed ID: 8520581
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wider than Thought Phylogenetic Occurrence of Apicortin, A Characteristic Protein of Apicomplexan Parasites.
    Orosz F
    J Mol Evol; 2016 Jun; 82(6):303-14. PubMed ID: 27282556
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of dinucleotide frequency and codon usage in the phylum Apicomplexa.
    Ellis J; Griffin H; Morrison D; Johnson AM
    Gene; 1993 Apr; 126(2):163-70. PubMed ID: 8482530
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles.
    Janouškovec J; Paskerova GG; Miroliubova TS; Mikhailov KV; Birley T; Aleoshin VV; Simdyanov TG
    Elife; 2019 Aug; 8():. PubMed ID: 31418692
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin.
    Vollmer M; Thomsen N; Wiek S; Seeber F
    J Biol Chem; 2001 Feb; 276(8):5483-90. PubMed ID: 11056177
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Apicortin, a unique protein, with a putative cytoskeletal role, shared only by apicomplexan parasites and the placozoan Trichoplax adhaerens.
    Orosz F
    Infect Genet Evol; 2009 Dec; 9(6):1275-86. PubMed ID: 19778640
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again.
    Oborník M; Janouskovec J; Chrudimský T; Lukes J
    Int J Parasitol; 2009 Jan; 39(1):1-12. PubMed ID: 18822291
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The non-photosynthetic plastid in malarial parasites and other apicomplexans is derived from outside the green plastid lineage.
    Blanchard JL; Hicks JS
    J Eukaryot Microbiol; 1999; 46(4):367-75. PubMed ID: 10461383
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New eukaryotic systematics: a phylogenetic perspective of developmental gene expression in the Apicomplexa.
    Gissot M; Kim K; Schaap D; Ajioka JW
    Int J Parasitol; 2009 Jan; 39(2):145-51. PubMed ID: 18983845
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The importance of reverse genetics in determining gene function in apicomplexan parasites.
    Soete M; Hettman C; Soldati D
    Parasitology; 1999; 118 Suppl():S53-61. PubMed ID: 10466137
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Consistent and contrasting properties of lineage-specific genes in the apicomplexan parasites Plasmodium and Theileria.
    Kuo CH; Kissinger JC
    BMC Evol Biol; 2008 Apr; 8():108. PubMed ID: 18405380
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prospects for elucidating the phylogeny of the Apicomplexa.
    Morrison DA
    Parasite; 2008 Sep; 15(3):191-6. PubMed ID: 18814680
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences.
    Perkins SL; Schall JJ
    J Parasitol; 2002 Oct; 88(5):972-8. PubMed ID: 12435139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.