These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20692008)

  • 1. Automatic biodetector of water toxicity (ABTOW) as a tool for examination of phenol and cyanide contaminated water.
    Woznica A; Nowak A; Karczewski J; Klis C; Bernas T
    Chemosphere; 2010 Oct; 81(6):767-72. PubMed ID: 20692008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring structure and activity of nitrifying bacterial biofilm in an automatic biodetector of water toxicity.
    Woznica A; Nowak A; Beimfohr C; Karczewski J; Bernas T
    Chemosphere; 2010 Feb; 78(9):1121-8. PubMed ID: 20096440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial Architecture of Nitrifying Bacteria Biofilm Immobilized on Polyurethane Foam in an Automatic Biodetector for Water Toxicity.
    Woznica A; Karcz J; Nowak A; Gmur A; Bernas T
    Microsc Microanal; 2010 Sep; ():1-11. PubMed ID: 20810011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Use of bioreactors for continuous water monitoring].
    Blessing B; Fritz-Langen H; Krebs F
    Schriftenr Ver Wasser Boden Lufthyg; 1992; 89():247-54. PubMed ID: 1307795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity assessment of common xenobiotic compounds on municipal activated sludge: comparison between respirometry and Microtox.
    Ricco G; Tomei MC; Ramadori R; Laera G
    Water Res; 2004 Apr; 38(8):2103-10. PubMed ID: 15087191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant.
    Okochi M; Mima K; Miyata M; Shinozaki Y; Haraguchi S; Fujisawa M; Kaneko M; Masukata T; Matsunaga T
    Biotechnol Bioeng; 2004 Sep; 87(7):905-11. PubMed ID: 15334417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors.
    Papadimitriou CA; Samaras P; Sakellaropoulos GP
    Bioresour Technol; 2009 Jan; 100(1):31-7. PubMed ID: 18650084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-channel continuous water toxicity monitoring system: its evaluation and application to water discharged from a power plant.
    Kim BC; Gu MB
    Environ Monit Assess; 2005 Oct; 109(1-3):123-33. PubMed ID: 16240193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment.
    Kim YM; Park D; Lee DS; Park JM
    J Hazard Mater; 2008 Apr; 152(3):915-21. PubMed ID: 17804160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Distribution of bacteria resistant to oxygen-containing anions-xenobiotics].
    Smirnova GF
    Mikrobiol Z; 2005; 67(5):11-8. PubMed ID: 16396107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An off-line respirometric procedure to determine inhibition and toxicity of biodegradable compounds in biomass from an industrial WWTP.
    Guisasola A; Baeza JA; Carrera J; Casas C; Lafuente J
    Water Sci Technol; 2003; 48(11-12):267-75. PubMed ID: 14753546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity.
    Gu MB; Gil GC
    Biosens Bioelectron; 2001 Dec; 16(9-12):661-6. PubMed ID: 11679242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy-metal and microbial depuration of the clam Ruditapes decussatus and its effect on bivalve behavior and physiology.
    El-Shenawy NS
    Environ Toxicol; 2004 Apr; 19(2):143-53. PubMed ID: 15038001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring and classification of toxicity using recombinant bioluminescent bacteria.
    Gu MB; Choi SH
    Water Sci Technol; 2001; 43(2):147-54. PubMed ID: 11380173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ relationships between spatio-temporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river.
    Pesce S; Margoum C; Montuelle B
    Water Res; 2010 Mar; 44(6):1941-9. PubMed ID: 20031187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluvial biofilms: A pertinent tool to assess beta-blockers toxicity.
    Bonnineau C; Guasch H; Proia L; Ricart M; Geiszinger A; Romaní AM; Sabater S
    Aquat Toxicol; 2010 Feb; 96(3):225-33. PubMed ID: 19945176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel continuous toxicity test system using a luminously modified freshwater bacterium.
    Cho JC; Park KJ; Ihm HS; Park JE; Kim SY; Kang I; Lee KH; Jahng D; Lee DH; Kim SJ
    Biosens Bioelectron; 2004 Sep; 20(2):338-44. PubMed ID: 15308239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenol biodegradation and simultaneous nitrogen removal using a carbon fiber felt biofilm reactor.
    Chen Y; Liu M; Xu F; Zhu S; Shen S
    Water Sci Technol; 2010; 62(5):1052-9. PubMed ID: 20818045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baia Mare accident--brief ecotoxicological report of Czech experts.
    Soldán P; Pavonic M; Boucek J; Kokes J
    Ecotoxicol Environ Saf; 2001 Jul; 49(3):255-61. PubMed ID: 11440479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria.
    Ricart M; Barceló D; Geiszinger A; Guasch H; de Alda ML; Romaní AM; Vidal G; Villagrasa M; Sabater S
    Chemosphere; 2009 Sep; 76(10):1392-401. PubMed ID: 19580990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.