These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 20692016)
1. Sensitivity of blanket peat vegetation and hydrochemistry to local disturbances. Robroek BJ; Smart RP; Holden J Sci Total Environ; 2010 Oct; 408(21):5028-34. PubMed ID: 20692016 [TBL] [Abstract][Full Text] [Related]
2. Spatial and temporal variability in the relationship between water colour and dissolved organic carbon in blanket peat pore waters. Wallage ZE; Holden J Sci Total Environ; 2010 Nov; 408(24):6235-42. PubMed ID: 20888621 [TBL] [Abstract][Full Text] [Related]
3. Simulated climate change impact on summer dissolved organic carbon release from peat and surface vegetation: implications for drinking water treatment. Ritson JP; Bell M; Graham NJ; Templeton MR; Brazier RE; Verhoef A; Freeman C; Clark JM Water Res; 2014 Dec; 67():66-76. PubMed ID: 25262551 [TBL] [Abstract][Full Text] [Related]
4. Removal of mesh track on an upland blanket peatland leads to changes in vegetation composition and structure. Williams-Mounsey J; Crowle A; Grayson R; Holden J J Environ Manage; 2023 Aug; 339():117935. PubMed ID: 37075635 [TBL] [Abstract][Full Text] [Related]
5. Gully hotspot contribution to landscape methane (CH4) and carbon dioxide (CO2) fluxes in a northern peatland. McNamara NP; Plant T; Oakley S; Ward S; Wood C; Ostle N Sci Total Environ; 2008 Oct; 404(2-3):354-60. PubMed ID: 18502473 [TBL] [Abstract][Full Text] [Related]
6. Drain blocking: an effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland. Wallage ZE; Holden J; McDonald AT Sci Total Environ; 2006 Aug; 367(2-3):811-21. PubMed ID: 16600338 [TBL] [Abstract][Full Text] [Related]
7. Ditch blocking, water chemistry and organic carbon flux: evidence that blanket bog restoration reduces erosion and fluvial carbon loss. Wilson L; Wilson J; Holden J; Johnstone I; Armstrong A; Morris M Sci Total Environ; 2011 May; 409(11):2010-8. PubMed ID: 21440287 [TBL] [Abstract][Full Text] [Related]
8. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation. Elliott DR; Caporn SJ; Nwaishi F; Nilsson RH; Sen R PLoS One; 2015; 10(5):e0124726. PubMed ID: 25969988 [TBL] [Abstract][Full Text] [Related]
9. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Heijmans MM; van der Knaap YA; Holmgren M; Limpens J Glob Chang Biol; 2013 Jul; 19(7):2240-50. PubMed ID: 23526779 [TBL] [Abstract][Full Text] [Related]
10. Ericoid shrub encroachment shifts aboveground-belowground linkages in three peatlands across Europe and Western Siberia. Buttler A; Bragazza L; Laggoun-Défarge F; Gogo S; Toussaint ML; Lamentowicz M; Chojnicki BH; Słowiński M; Słowińska S; Zielińska M; Reczuga M; Barabach J; Marcisz K; Lamentowicz Ł; Harenda K; Lapshina E; Gilbert D; Schlaepfer R; Jassey VEJ Glob Chang Biol; 2023 Dec; 29(23):6772-6793. PubMed ID: 37578632 [TBL] [Abstract][Full Text] [Related]
11. The impact of catchment conifer plantation forestry on the hydrochemistry of peatland lakes. Drinan TJ; Graham CT; O'Halloran J; Harrison SS Sci Total Environ; 2013 Jan; 443():608-20. PubMed ID: 23220753 [TBL] [Abstract][Full Text] [Related]
12. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change. Gavazov K; Albrecht R; Buttler A; Dorrepaal E; Garnett MH; Gogo S; Hagedorn F; Mills RTE; Robroek BJM; Bragazza L Glob Chang Biol; 2018 Sep; 24(9):3911-3921. PubMed ID: 29569798 [TBL] [Abstract][Full Text] [Related]
13. Land management as a factor controlling dissolved organic carbon release from upland peat soils 2: changes in DOC productivity over four decades. Clutterbuck B; Yallop AR Sci Total Environ; 2010 Nov; 408(24):6179-91. PubMed ID: 20869100 [TBL] [Abstract][Full Text] [Related]
14. Identifying the role of environmental drivers in organic carbon export from a forested peat catchment. Ryder E; de Eyto E; Dillane M; Poole R; Jennings E Sci Total Environ; 2014 Aug; 490():28-36. PubMed ID: 24840277 [TBL] [Abstract][Full Text] [Related]
15. Plant succession and geochemical indices in immature peatlands in the Changbai Mountains, northeastern region of China: Implications for climate change and peatland development. Zhang L; Gałka M; Kumar A; Liu M; Knorr KH; Yu ZG Sci Total Environ; 2021 Jun; 773():143776. PubMed ID: 33261873 [TBL] [Abstract][Full Text] [Related]
16. Historical peat loss explains limited short-term response of drained blanket bogs to rewetting. Williamson J; Rowe E; Reed D; Ruffino L; Jones P; Dolan R; Buckingham H; Norris D; Astbury S; Evans CD J Environ Manage; 2017 Mar; 188():278-286. PubMed ID: 27992818 [TBL] [Abstract][Full Text] [Related]
17. Assessment of potential climate change impacts on peatland dissolved organic carbon release and drinking water treatment from laboratory experiments. Tang R; Clark JM; Bond T; Graham N; Hughes D; Freeman C Environ Pollut; 2013 Feb; 173():270-7. PubMed ID: 23207497 [TBL] [Abstract][Full Text] [Related]
18. Natural selection on a carbon cycling trait drives ecosystem engineering by Piatkowski BT; Yavitt JB; Turetsky MR; Shaw AJ Proc Biol Sci; 2021 Aug; 288(1957):20210609. PubMed ID: 34403639 [No Abstract] [Full Text] [Related]
19. Response of C and N cycles to N fertilization in Sphagnum and Molinia-dominated peat mesocosms. Leroy F; Gogo S; Guimbaud C; Francez AJ; Zocatelli R; Défarge C; Bernard-Jannin L; Hu Z; Laggoun-Défarge F J Environ Sci (China); 2019 Mar; 77():264-272. PubMed ID: 30573090 [TBL] [Abstract][Full Text] [Related]