These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 20692096)
1. Characteristics and personal exposures of carbonyl compounds in the subway stations and in-subway trains of Shanghai, China. Feng Y; Mu C; Zhai J; Li J; Zou T J Hazard Mater; 2010 Nov; 183(1-3):574-82. PubMed ID: 20692096 [TBL] [Abstract][Full Text] [Related]
2. Airborne carbonyls from motor vehicle emissions in two highway tunnels. Grosjean D; Grosjean E Res Rep Health Eff Inst; 2002 Jan; (107):57-78; discussion 79-92. PubMed ID: 11954678 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous determination of airborne carbonyls and aromatic hydrocarbons using mixed sorbent collection and thermal desorption-gas chromatography/mass spectrometric analysis. Chien YC; Yin KG J Environ Monit; 2009 May; 11(5):1013-9. PubMed ID: 19436859 [TBL] [Abstract][Full Text] [Related]
4. [Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul metropolitan subway stations]. Kim KY; Park JB; Kim CN; Lee KJ J Prev Med Public Health; 2006 Jul; 39(4):325-30. PubMed ID: 16910306 [TBL] [Abstract][Full Text] [Related]
5. Manganese concentrations in the air of the Montreal (Canada) subway in relation to surface automobile traffic density. Boudia N; Halley R; Kennedy G; Lambert J; Gareau L; Zayed J Sci Total Environ; 2006 Jul; 366(1):143-7. PubMed ID: 16297437 [TBL] [Abstract][Full Text] [Related]
6. Determination of airborne carbonyls via pentafluorophenylhydrazine derivatisation by GC-MS and its comparison with HPLC method. Pang X; Lewis AC; Hamilton JF Talanta; 2011 Jul; 85(1):406-14. PubMed ID: 21645717 [TBL] [Abstract][Full Text] [Related]
7. Exposure to airborne particulate matter in the subway system. Martins V; Moreno T; Minguillón MC; Amato F; de Miguel E; Capdevila M; Querol X Sci Total Environ; 2015 Apr; 511():711-22. PubMed ID: 25616190 [TBL] [Abstract][Full Text] [Related]
8. Determination of airborne carbonyls: comparison of a thermal desorption/GC method with the standard DNPH/HPLC method. Ho SS; Yu JZ Environ Sci Technol; 2004 Feb; 38(3):862-70. PubMed ID: 14968875 [TBL] [Abstract][Full Text] [Related]
9. Determination of gaseous carbonyl compounds by their pentafluorophenyl hydrazones with gas chromatography/mass spectrometry. Li J; Feng YL; Xie CJ; Huang J; Yu JZ; Feng JL; Sheng GY; Fu JM; Wu MH Anal Chim Acta; 2009 Mar; 635(1):84-93. PubMed ID: 19200483 [TBL] [Abstract][Full Text] [Related]
10. Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere of Guangzhou, China. Lü H; Cai QY; Wen S; Chi Y; Guo S; Sheng G; Fu J Sci Total Environ; 2010 Aug; 408(17):3523-9. PubMed ID: 20593540 [TBL] [Abstract][Full Text] [Related]
11. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations. Kim KY; Kim YS; Roh YM; Lee CM; Kim CN J Hazard Mater; 2008 Jun; 154(1-3):440-3. PubMed ID: 18036738 [TBL] [Abstract][Full Text] [Related]
12. Optimization of a solid sorbent dynamic personal air sampling method for aldehydes. Shen Y; Hee SS Appl Occup Environ Hyg; 2000 Feb; 15(2):228-34. PubMed ID: 10675981 [TBL] [Abstract][Full Text] [Related]
13. Ambient, indoor and personal exposure relationships of volatile organic compounds in Mexico City Metropolitan Area. Serrano-Trespalacios PI; Ryan L; Spengler JD J Expo Anal Environ Epidemiol; 2004; 14 Suppl 1():S118-32. PubMed ID: 15118753 [TBL] [Abstract][Full Text] [Related]
14. Factors controlling air quality in different European subway systems. Martins V; Moreno T; Mendes L; Eleftheriadis K; Diapouli E; Alves CA; Duarte M; de Miguel E; Capdevila M; Querol X; Minguillón MC Environ Res; 2016 Apr; 146():35-46. PubMed ID: 26717078 [TBL] [Abstract][Full Text] [Related]
15. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea. Jung HJ; Kim B; Malek MA; Koo YS; Jung JH; Son YS; Kim JC; Kim H; Ro CU J Hazard Mater; 2012 Apr; 213-214():331-40. PubMed ID: 22381374 [TBL] [Abstract][Full Text] [Related]
16. Temporal variation of airborne fungi concentrations and related factors in subway stations in Seoul, Korea. Cho JH; Hee Min K; Paik NW Int J Hyg Environ Health; 2006 May; 209(3):249-55. PubMed ID: 16410055 [TBL] [Abstract][Full Text] [Related]
17. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses. Weisel CP; Zhang J; Turpin BJ; Morandi MT; Colome S; Stock TH; Spektor DM; Korn L; Winer AM; Kwon J; Meng QY; Zhang L; Harrington R; Liu W; Reff A; Lee JH; Alimokhtari S; Mohan K; Shendell D; Jones J; Farrar L; Maberti S; Fan T Res Rep Health Eff Inst; 2005 Nov; (130 Pt 1):1-107; discussion 109-27. PubMed ID: 16454009 [TBL] [Abstract][Full Text] [Related]
18. Indoor and outdoor carbonyl compounds and BTEX in the hospitals of Guangzhou, China. Lü H; Wen S; Feng Y; Wang X; Bi X; Sheng G; Fu J Sci Total Environ; 2006 Sep; 368(2-3):574-84. PubMed ID: 16740294 [TBL] [Abstract][Full Text] [Related]
19. Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China. Weng M; Zhu L; Yang K; Chen S J Hazard Mater; 2009 May; 164(2-3):700-6. PubMed ID: 18926625 [TBL] [Abstract][Full Text] [Related]
20. The London Underground: dust and hazards to health. Seaton A; Cherrie J; Dennekamp M; Donaldson K; Hurley JF; Tran CL Occup Environ Med; 2005 Jun; 62(6):355-62. PubMed ID: 15901881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]