These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20692679)

  • 41. Comparison between polishing (maturation) ponds and subsurface flow constructed wetlands (planted and unplanted) for the post-treatment of the effluent from UASB reactors.
    von Sperling M; Dornelas FL; Assunção FA; de Paoli AC; Mabub MO
    Water Sci Technol; 2010; 61(5):1201-9. PubMed ID: 20220242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of bacteria by filtration in planted and non-planted sand columns.
    Wand H; Vacca G; Kuschk P; Krüger M; Kästner M
    Water Res; 2007 Jan; 41(1):159-67. PubMed ID: 17084880
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of the giant reed (Arundo donax) in horizontal subsurface flow wetlands for the treatment of dairy processing factory wastewater.
    Idris SM; Jones PL; Salzman SA; Croatto G; Allinson G
    Environ Sci Pollut Res Int; 2012 Sep; 19(8):3525-37. PubMed ID: 22573095
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aerobic treatment of dairy wastewater in an industrial three-reactor plant: effect of aeration regime on performances and on protozoan and bacterial communities.
    Tocchi C; Federici E; Fidati L; Manzi R; Vinciguerra V; Petruccioli M
    Water Res; 2012 Jun; 46(10):3334-44. PubMed ID: 22503428
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microcosm wetlands for wastewater treatment with different hydraulic loading rates and macrophytes.
    Jing SR; Lin YF; Wang TW; Lee DY
    J Environ Qual; 2002; 31(2):690-6. PubMed ID: 11931463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Performance evaluation of planted and unplanted subsurface-flow constructed wetlands for the post-treatment of UASB reactor effluents.
    Dornelas FL; Machado MB; von Sperling M
    Water Sci Technol; 2009; 60(12):3025-33. PubMed ID: 19955625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands.
    Caselles-Osorio A; García J
    Sci Total Environ; 2007 Jun; 378(3):253-62. PubMed ID: 17433416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolution of the microbial community in a full-scale printing and dyeing wastewater treatment system.
    Yang Q; Wang J; Wang H; Chen X; Ren S; Li X; Xu Y; Zhang H; Li X
    Bioresour Technol; 2012 Aug; 117():155-63. PubMed ID: 22613891
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Constructed wetlands for tannery wastewater treatment in Portugal: ten years of experience.
    Calheiros CS; Rangel AO; Castro PM
    Int J Phytoremediation; 2014; 16(7-12):859-70. PubMed ID: 24933889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nutrient removal and bacterial communities in swine wastewater lagoon and constructed wetlands.
    Dong X; Reddy GB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1526-35. PubMed ID: 20700852
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA.
    Dordio A; Carvalho AJ; Teixeira DM; Dias CB; Pinto AP
    Bioresour Technol; 2010 Feb; 101(3):886-92. PubMed ID: 19783427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The microbial diversity of laboratory-scale wetlands appears to be randomly assembled.
    Baptista Jde C; Davenport RJ; Donnelly T; Curtis TP
    Water Res; 2008 Jun; 42(12):3182-90. PubMed ID: 18466948
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of cultivated species and retention time on the performance of constructed wetlands.
    Sarmento AP; Borges AC; de Matos AT
    Environ Technol; 2013; 34(5-8):961-5. PubMed ID: 23837347
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular analysis of ammonia-oxidizing bacteria community in intermittent aeration sequencing batch reactors used for animal wastewater treatment.
    Otawa K; Asano R; Ohba Y; Sasaki T; Kawamura E; Koyama F; Nakamura S; Nakai Y
    Environ Microbiol; 2006 Nov; 8(11):1985-96. PubMed ID: 17014497
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of single-stage and a two-stage vertical flow constructed wetland systems for different load scenarios.
    Langergraber G; Pressl A; Leroch K; Rohrhofer R; Haberl R
    Water Sci Technol; 2010; 61(5):1341-8. PubMed ID: 20220255
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preliminary investigation of the potential of four tropical emergent macrophytes for treatment of pre-treated pulp and papermill wastewater in Kenya.
    Abira MA; Ngirigacha HW; van Bruggen JJ
    Water Sci Technol; 2003; 48(5):223-31. PubMed ID: 14621168
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and configuration criteria for wetland systems treating greywater.
    Paulo PL; Begosso L; Pansonato N; Shrestha RR; Boncz MA
    Water Sci Technol; 2009; 60(8):2001-7. PubMed ID: 19844046
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Winery and distillery wastewater treatment by constructed wetland with shorter retention time.
    Mulidzi AR
    Water Sci Technol; 2010; 61(10):2611-5. PubMed ID: 20453335
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbial diversity in hypersaline wastewater: the example of tanneries.
    Lefebvre O; Vasudevan N; Thanasekaran K; Moletta R; Godon JJ
    Extremophiles; 2006 Dec; 10(6):505-13. PubMed ID: 16738814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.