BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20692700)

  • 1. Debye function analysis and 2D imaging of nanoscaled engineered bone.
    Guagliardi A; Cedola A; Giannini C; Ladisa M; Cervellino A; Sorrentino A; Lagomarsino S; Cancedda R; Mastrogiacomo M
    Biomaterials; 2010 Nov; 31(32):8289-98. PubMed ID: 20692700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption.
    Mastrogiacomo M; Papadimitropoulos A; Cedola A; Peyrin F; Giannoni P; Pearce SG; Alini M; Giannini C; Guagliardi A; Cancedda R
    Biomaterials; 2007 Mar; 28(7):1376-84. PubMed ID: 17134749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue regeneration and repair of goat segmental femur defect with bioactive triphasic ceramic-coated hydroxyapatite scaffold.
    Nair MB; Varma HK; Menon KV; Shenoy SJ; John A
    J Biomed Mater Res A; 2009 Dec; 91(3):855-65. PubMed ID: 19065569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone marrow stromal cells and their use in regenerating bone.
    Cancedda R; Mastrogiacomo M; Bianchi G; Derubeis A; Muraglia A; Quarto R
    Novartis Found Symp; 2003; 249():133-43; discussion 143-7, 170-4, 239-41. PubMed ID: 12708654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: an X-ray computed microtomography study.
    Papadimitropoulos A; Mastrogiacomo M; Peyrin F; Molinari E; Komlev VS; Rustichelli F; Cancedda R
    Biotechnol Bioeng; 2007 Sep; 98(1):271-81. PubMed ID: 17657771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SEM and 3D synchrotron radiation micro-tomography in the study of bioceramic scaffolds for tissue-engineering applications.
    Peyrin F; Mastrogiacomo M; Cancedda R; Martinetti R
    Biotechnol Bioeng; 2007 Jun; 97(3):638-48. PubMed ID: 17089389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts.
    Nan K; Sun S; Li Y; Chen H; Wu T; Lu F
    J Biomed Mater Res A; 2010 May; 93(2):464-8. PubMed ID: 19582839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow.
    Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA
    Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering.
    Laschke MW; Strohe A; Menger MD; Alini M; Eglin D
    Acta Biomater; 2010 Jun; 6(6):2020-7. PubMed ID: 20004748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL
    J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineering of bone: search for a better scaffold.
    Mastrogiacomo M; Muraglia A; Komlev V; Peyrin F; Rustichelli F; Crovace A; Cancedda R
    Orthod Craniofac Res; 2005 Nov; 8(4):277-84. PubMed ID: 16238608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered bone from bone marrow stromal cells: a structural study by an advanced x-ray microdiffraction technique.
    Cedola A; Mastrogiacomo M; Burghammer M; Komlev V; Giannoni P; Favia A; Cancedda R; Rustichelli F; Lagomarsino S
    Phys Med Biol; 2006 Mar; 51(6):N109-16. PubMed ID: 16510946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats.
    Kruyt MC; de Bruijn JD; Wilson CE; Oner FC; van Blitterswijk CA; Verbout AJ; Dhert WJ
    Tissue Eng; 2003 Apr; 9(2):327-36. PubMed ID: 12740095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Ultrastrtctural observation of bone marrow stromal cells cultured in coralline hydroxyapatite].
    Tu XL; Liu HW; Iwai Y; Kumabe S; Aikawa F
    Nan Fang Yi Ke Da Xue Xue Bao; 2007 May; 27(5):705-7. PubMed ID: 17545094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation.
    Oliveira JM; Kotobuki N; Tadokoro M; Hirose M; Mano JF; Reis RL; Ohgushi H
    Bone; 2010 May; 46(5):1424-35. PubMed ID: 20152952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experimental study of tissue engineered bone with coralline hydroxyapatite as scaffolds].
    Shi PL; Gu XM; Chen FL
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2001 Nov; 15(6):373-6. PubMed ID: 11762228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.