These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 20693011)

  • 41. Influence of recasting different types of dental alloys on gingival fibroblast cytotoxicity.
    Imirzalioglu P; Alaaddinoglu E; Yilmaz Z; Oduncuoglu B; Yilmaz B; Rosenstiel S
    J Prosthet Dent; 2012 Jan; 107(1):24-33. PubMed ID: 22230913
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The castability of pure titanium compared with Ni-Cr and Ni-Cr-Be alloys.
    Paulino SM; Leal MB; Pagnano VO; Bezzon OL
    J Prosthet Dent; 2007 Dec; 98(6):445-54. PubMed ID: 18061738
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations.
    Cacciafesta V; Sfondrini MF; Ricciardi A; Scribante A; Klersy C; Auricchio F
    Am J Orthod Dentofacial Orthop; 2003 Oct; 124(4):395-402. PubMed ID: 14560269
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [A new osteoblast cell culture system for standardized testing of biomaterials].
    Hendrich C; Geyer M; Scheddin D; Schütze N; Eulert J; Thull R
    Biomed Tech (Berl); 1996 Oct; 41(10):278-83. PubMed ID: 9019229
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomaterial optimization in total disc arthroplasty.
    Hallab N; Link HD; McAfee PC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S139-52. PubMed ID: 14560185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of recasting on the cytotoxicity of base metal alloys.
    Al-Hiyasat AS; Darmani H
    J Prosthet Dent; 2005 Feb; 93(2):158-63. PubMed ID: 15674227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of metal sensitizer potency with the reconstructed human epidermis IL-18 assay.
    Gibbs S; Kosten I; Veldhuizen R; Spiekstra S; Corsini E; Roggen E; Rustemeyer T; Feilzer AJ; Kleverlaan CJ
    Toxicology; 2018 Jan; 393():62-72. PubMed ID: 29079364
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo biocompatibility and mechanical study of novel bone-bioactive materials for prosthetic implantation.
    Zhang XS; Revell PA; Evans SL; Tuke MA; Gregson PJ
    J Biomed Mater Res; 1999 Aug; 46(2):279-86. PubMed ID: 10380007
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of friction between ceramic brackets and orthodontic wires of four alloys.
    Angolkar PV; Kapila S; Duncanson MG; Nanda RS
    Am J Orthod Dentofacial Orthop; 1990 Dec; 98(6):499-506. PubMed ID: 2248227
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proliferation and differentiation parameters of human osteoblasts on titanium and steel surfaces.
    Schmidt C; Ignatius AA; Claes LE
    J Biomed Mater Res; 2001 Feb; 54(2):209-15. PubMed ID: 11093180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination.
    Wilks SA; Michels HT; Keevil CW
    Int J Food Microbiol; 2006 Sep; 111(2):93-8. PubMed ID: 16876278
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ion implantation effects on friction and wear of joint prosthesis materials.
    Rieu J; Pichat A; Rabbe LM; Rambert A; Chabrol C; Robelet M
    Biomaterials; 1991 Mar; 12(2):139-43. PubMed ID: 1878449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antimicrobial effect, frictional resistance, and surface roughness of stainless steel orthodontic brackets coated with nanofilms of silver and titanium oxide: a preliminary study.
    Ghasemi T; Arash V; Rabiee SM; Rajabnia R; Pourzare A; Rakhshan V
    Microsc Res Tech; 2017 Jun; 80(6):599-607. PubMed ID: 28181353
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of nickel-titanium and beta titanium wire sizes to conventional orthodontic arch wire materials.
    Kusy RP
    Am J Orthod; 1981 Jun; 79(6):625-9. PubMed ID: 6940456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biocompatibility of new Ti-Nb-Ta base alloys.
    Hussein AH; Gepreel MA; Gouda MK; Hefnawy AM; Kandil SH
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():574-8. PubMed ID: 26838885
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A comparative study of the static and kinetic frictional resistance of titanium molybdenum alloy archwires in stainless steel brackets.
    Cash A; Curtis R; Garrigia-Majo D; McDonald F
    Eur J Orthod; 2004 Feb; 26(1):105-11. PubMed ID: 14994890
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relative kinetic frictional forces between sintered stainless steel brackets and orthodontic wires.
    Vaughan JL; Duncanson MG; Nanda RS; Currier GF
    Am J Orthod Dentofacial Orthop; 1995 Jan; 107(1):20-7. PubMed ID: 7817958
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Biocompatibility of precious metal dental alloys].
    Reuling N; Pohl-Reuling B; Keil M
    ZWR; 1991 Mar; 100(3):146, 148, 150 passim. PubMed ID: 1872036
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Histopathologic evaluation following chronic implantation of chromium and steel based metal alloys in the rabbit central nervous system.
    Rauch HC; Ekstrom ME; Montgomery IN; Parada F; Berke J
    J Biomed Mater Res; 1986; 20(9):1277-93. PubMed ID: 3097022
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.
    Krischak GD; Gebhard F; Mohr W; Krivan V; Ignatius A; Beck A; Wachter NJ; Reuter P; Arand M; Kinzl L; Claes LE
    Arch Orthop Trauma Surg; 2004 Mar; 124(2):104-13. PubMed ID: 14727127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.