BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20694145)

  • 21. A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation.
    Kakegawa W; Yuzaki M
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17846-51. PubMed ID: 16303868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversing cerebellar long-term depression.
    Lev-Ram V; Mehta SB; Kleinfeld D; Tsien RY
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15989-93. PubMed ID: 14671315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerebellar long-term potentiation: cellular mechanisms and role in learning.
    Grasselli G; Hansel C
    Int Rev Neurobiol; 2014; 117():39-51. PubMed ID: 25172628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells.
    Belmeguenai A; Hosy E; Bengtsson F; Pedroarena CM; Piochon C; Teuling E; He Q; Ohtsuki G; De Jeu MT; Elgersma Y; De Zeeuw CI; Jörntell H; Hansel C
    J Neurosci; 2010 Oct; 30(41):13630-43. PubMed ID: 20943904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus.
    Hsu KS; Huang CC
    Br J Pharmacol; 1997 Oct; 122(4):671-81. PubMed ID: 9375963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-Term Depression of Intrinsic Excitability Accompanied by Synaptic Depression in Cerebellar Purkinje Cells.
    Shim HG; Jang DC; Lee J; Chung G; Lee S; Kim YG; Jeon DE; Kim SJ
    J Neurosci; 2017 Jun; 37(23):5659-5669. PubMed ID: 28495974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interneuronal NMDA receptors regulate long-term depression and motor learning in the cerebellum.
    Kono M; Kakegawa W; Yoshida K; Yuzaki M
    J Physiol; 2019 Feb; 597(3):903-920. PubMed ID: 30382582
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct roles for Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and Ras-GRF2 in the induction of long-term potentiation and long-term depression.
    Li S; Tian X; Hartley DM; Feig LA
    J Neurosci; 2006 Feb; 26(6):1721-9. PubMed ID: 16467520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alpha3 integrin receptors contribute to the consolidation of long-term potentiation.
    Kramár EA; Bernard JA; Gall CM; Lynch G
    Neuroscience; 2002; 110(1):29-39. PubMed ID: 11882370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate.
    Brown GP; Blitzer RD; Connor JH; Wong T; Shenolikar S; Iyengar R; Landau EM
    J Neurosci; 2000 Nov; 20(21):7880-7. PubMed ID: 11050107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signaling cascade regulating long-term potentiation of GABA(A) receptor responsiveness in cerebellar Purkinje neurons.
    Kawaguchi SY; Hirano T
    J Neurosci; 2002 May; 22(10):3969-76. PubMed ID: 12019316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum.
    Dobson KL; Bellamy TC
    Neural Plast; 2015; 2015():602356. PubMed ID: 26171253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphoinositide 3-kinase-dependent activation of Rac.
    Welch HC; Coadwell WJ; Stephens LR; Hawkins PT
    FEBS Lett; 2003 Jul; 546(1):93-7. PubMed ID: 12829242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alterations in the balance of protein kinase and phosphatase activities and age-related impairments of synaptic transmission and long-term potentiation.
    Hsu KS; Huang CC; Liang YC; Wu HM; Chen YL; Lo SW; Ho WC
    Hippocampus; 2002; 12(6):787-802. PubMed ID: 12542230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lack of JWA Enhances Neurogenesis and Long-Term Potentiation in Hippocampal Dentate Gyrus Leading to Spatial Cognitive Potentiation.
    Sha S; Xu J; Lu ZH; Hong J; Qu WJ; Zhou JW; Chen L
    Mol Neurobiol; 2016 Jan; 53(1):355-368. PubMed ID: 25432888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential Modulation of GABAA Receptors Underlies Postsynaptic Depolarization- and Purinoceptor-Mediated Enhancement of Cerebellar Inhibitory Transmission: A Non-Stationary Fluctuation Analysis Study.
    Ono Y; Saitow F; Konishi S
    PLoS One; 2016; 11(3):e0150636. PubMed ID: 26930485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation of exchange protein activated by cyclic-AMP enhances long-lasting synaptic potentiation in the hippocampus.
    Gelinas JN; Banko JL; Peters MM; Klann E; Weeber EJ; Nguyen PV
    Learn Mem; 2008 Jun; 15(6):403-11. PubMed ID: 18509114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of β3-adrenergic receptor in the modulation of synaptic transmission and plasticity in mouse cerebellar cortex.
    Lippiello P; Hoxha E; Cristiano C; Malvicini E; Stanley A; Russo R; Tempia F; Miniaci MC
    J Neurosci Res; 2020 Nov; 98(11):2263-2274. PubMed ID: 33174240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP.
    Lev-Ram V; Wong ST; Storm DR; Tsien RY
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8389-93. PubMed ID: 12048250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons.
    Man HY; Wang Q; Lu WY; Ju W; Ahmadian G; Liu L; D'Souza S; Wong TP; Taghibiglou C; Lu J; Becker LE; Pei L; Liu F; Wymann MP; MacDonald JF; Wang YT
    Neuron; 2003 May; 38(4):611-24. PubMed ID: 12765612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.