BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20694172)

  • 1. A Non-Orthogonal Block-Localized Effective Hamiltonian Approach for Chemical and Enzymatic Reactions.
    Cembran A; Payaka A; Lin YL; Xie W; Mo Y; Song L; Gao J
    J Chem Theory Comput; 2010 Jul; 6(7):2242-2251. PubMed ID: 20694172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Effective Hamiltonian Molecular Orbital-Valence Bond (MOVB) Approach for Chemical Reactions Applied to the Nucleophilic Substitution Reaction of Hydrosulfide Ion and Chloromethane.
    Song L; Mo Y; Gao J
    J Chem Theory Comput; 2009 Jan; 5(1):174-185. PubMed ID: 20047006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perspective on Diabatic Models of Chemical Reactivity as Illustrated by the Gas-Phase S(N)2 Reaction of Acetate Ion with 1,2-Dichloroethane.
    Valero R; Song L; Gao J; Truhlar DG
    J Chem Theory Comput; 2009 Jan; 5(1):1-22. PubMed ID: 20047005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the construction of diabatic and adiabatic potential energy surfaces based on ab initio valence bond theory.
    Song L; Gao J
    J Phys Chem A; 2008 Dec; 112(50):12925-35. PubMed ID: 18828577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions. II. An energy decomposition analysis.
    Titmuss SJ; Cummins PL; Rendell AP; Bliznyuk AA; Gready JE
    J Comput Chem; 2002 Nov; 23(14):1314-22. PubMed ID: 12214314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Block-Localized Density Functional Theory (BLDFT), Diabatic Coupling, and Their Use in Valence Bond Theory for Representing Reactive Potential Energy Surfaces.
    Cembran A; Song L; Mo Y; Gao J
    J Chem Theory Comput; 2009 Oct; 5(10):2702-2716. PubMed ID: 20228960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress toward chemical accuracy in the computer simulation of condensed phase reactions.
    Bash PA; Ho LL; MacKerell AD; Levine D; Hallstrom P
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3698-703. PubMed ID: 11607654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping.
    Xiang Y; Warshel A
    J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction Path-Force Matching in Collective Variables: Determining Ab Initio QM/MM Free Energy Profiles by Fitting Mean Force.
    Kim B; Snyder R; Nagaraju M; Zhou Y; Ojeda-May P; Keeton S; Hege M; Shao Y; Pu J
    J Chem Theory Comput; 2021 Aug; 17(8):4961-4980. PubMed ID: 34283604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E; Klähn M; Warshel A
    J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Quantum and Classical Simulations of the Formate Dehydrogenase Catalyzed Hydride Transfer Reaction on an Accurate Semiempirical Potential Energy Surface.
    Vardi-Kilshtain A; Major DT; Kohen A; Engel H; Doron D
    J Chem Theory Comput; 2012 Nov; 8(11):4786-96. PubMed ID: 26605631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QM/MM Minimum Free Energy Path: Methodology and Application to Triosephosphate Isomerase.
    Hu H; Lu Z; Yang W
    J Chem Theory Comput; 2007 Mar; 3(2):390-406. PubMed ID: 19079734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging semiempirical and ab initio QM/MM potentials by Gaussian process regression and its sparse variants for free energy simulation.
    Snyder R; Kim B; Pan X; Shao Y; Pu J
    J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37530109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific Reaction Path Hamiltonian for Proton Transfer in Water: Reparameterized Semiempirical Models.
    Wu X; Thiel W; Pezeshki S; Lin H
    J Chem Theory Comput; 2013 Jun; 9(6):2672-86. PubMed ID: 26583861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doubly Polarized QM/MM with Machine Learning Chaperone Polarizability.
    Kim B; Shao Y; Pu J
    J Chem Theory Comput; 2021 Dec; 17(12):7682-7695. PubMed ID: 34723536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum mechanical/molecular mechanical study on the mechanism of the enzymatic Baeyer-Villiger reaction.
    Polyak I; Reetz MT; Thiel W
    J Am Chem Soc; 2012 Feb; 134(5):2732-41. PubMed ID: 22239272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-state model based on the block-localized wave function method.
    Mo Y
    J Chem Phys; 2007 Jun; 126(22):224104. PubMed ID: 17581041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AM1 Specific Reaction Parameters for Reactions of Hydroxide Ion with Halomethanes in Complex Environments: Development and Testing.
    Liang S; Roitberg AE
    J Chem Theory Comput; 2013 Oct; 9(10):4470-80. PubMed ID: 26589165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.