These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 20694255)
1. Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy. Mudanyali O; Oztoprak C; Tseng D; Erlinger A; Ozcan A Lab Chip; 2010 Sep; 10(18):2419-23. PubMed ID: 20694255 [TBL] [Abstract][Full Text] [Related]
2. Microfluidics for effective concentration and sorting of waterborne protozoan pathogens. Jimenez M; Bridle H J Microbiol Methods; 2016 Jul; 126():8-11. PubMed ID: 27074367 [TBL] [Abstract][Full Text] [Related]
3. Drinking water treatment processes for removal of Cryptosporidium and Giardia. Betancourt WQ; Rose JB Vet Parasitol; 2004 Dec; 126(1-2):219-34. PubMed ID: 15567586 [TBL] [Abstract][Full Text] [Related]
4. Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Koydemir HC; Gorocs Z; Tseng D; Cortazar B; Feng S; Chan RY; Burbano J; McLeod E; Ozcan A Lab Chip; 2015 Mar; 15(5):1284-93. PubMed ID: 25537426 [TBL] [Abstract][Full Text] [Related]
5. Monitoring of Noxious Protozoa for Management of Natural Water Resources. Bahk YY; Cho PY; Ahn SK; Park S; Jheong WH; Park YK; Shin HJ; Lee SS; Rhee O; Kim TS Korean J Parasitol; 2018 Apr; 56(2):205-210. PubMed ID: 29742877 [TBL] [Abstract][Full Text] [Related]
6. Microbial Health Risks of Ogundare OT; Olalemi A; Triumphant EO Turkiye Parazitol Derg; 2024 Jun; 48(2):82-88. PubMed ID: 38958402 [TBL] [Abstract][Full Text] [Related]
7. Portable and cost-effective pixel super-resolution on-chip microscope for telemedicine applications. Bishara W; Sikora U; Mudanyali O; Su TW; Yaglidere O; Luckhart S; Ozcan A Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8207-10. PubMed ID: 22256247 [TBL] [Abstract][Full Text] [Related]
8. Interactions of Cryptosporidium parvum, Giardia lamblia, vaccinal poliovirus type 1, and bacteriophages phiX174 and MS2 with a drinking water biofilm and a wastewater biofilm. Helmi K; Skraber S; Gantzer C; Willame R; Hoffmann L; Cauchie HM Appl Environ Microbiol; 2008 Apr; 74(7):2079-88. PubMed ID: 18281435 [TBL] [Abstract][Full Text] [Related]
9. Comparison of microscopy, rapid immunoassay, and molecular techniques for the detection of Giardia lamblia and Cryptosporidium parvum. Elsafi SH; Al-Maqati TN; Hussein MI; Adam AA; Hassan MM; Al Zahrani EM Parasitol Res; 2013 Apr; 112(4):1641-6. PubMed ID: 23411740 [TBL] [Abstract][Full Text] [Related]
10. Presence of Cryptosporidium parvum and Giardia lamblia in water samples from Southeast Asia: towards an integrated water detection system. Kumar T; Abd Majid MA; Onichandran S; Jaturas N; Andiappan H; Salibay CC; Tabo HA; Tabo N; Dungca JZ; Tangpong J; Phiriyasamith S; Yuttayong B; Polseela R; Do BN; Sawangjaroen N; Tan TC; Lim YA; Nissapatorn V Infect Dis Poverty; 2016 Jan; 5():3. PubMed ID: 26763230 [TBL] [Abstract][Full Text] [Related]
11. Accumulation of human waterborne parasites by zebra mussels (Dreissena polymorpha) and Asian freshwater clams (Corbicula fluminea). Graczyk TK; Conn DB; Marcogliese DJ; Graczyk H; De Lafontaine Y Parasitol Res; 2003 Jan; 89(2):107-12. PubMed ID: 12489009 [TBL] [Abstract][Full Text] [Related]
12. Development of Molecular Diagnosis Using Multiplex Real-Time PCR and T4 Phage Internal Control to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis from Human Stool Samples. Shin JH; Lee SE; Kim TS; Ma DW; Cho SH; Chai JY; Shin EH Korean J Parasitol; 2018 Oct; 56(5):419-427. PubMed ID: 30419727 [TBL] [Abstract][Full Text] [Related]
13. Combination of ARAD microfibre filtration and LAMP methodology for simple, rapid and cost-effective detection of human pathogenic Giardia duodenalis and Cryptosporidium spp. in drinking water. Plutzer J; Törökné A; Karanis P Lett Appl Microbiol; 2010 Jan; 50(1):82-8. PubMed ID: 19895420 [TBL] [Abstract][Full Text] [Related]
14. Label-free detection of Göröcs Z; Baum D; Song F; de Haan K; Ceylan Koydemir H; Qiu Y; Cai Z; Skandakumar T; Peterman S; Tamamitsu M; Ozcan A Lab Chip; 2020 Nov; 20(23):4404-4412. PubMed ID: 32808619 [TBL] [Abstract][Full Text] [Related]
15. Impact of bathers on levels of Cryptosporidium parvum oocysts and Giardia lamblia cysts in recreational beach waters. Sunderland D; Graczyk TK; Tamang L; Breysse PN Water Res; 2007 Aug; 41(15):3483-9. PubMed ID: 17583766 [TBL] [Abstract][Full Text] [Related]
16. Development of a combined in vitro cell culture--quantitative PCR assay for evaluating the disinfection performance of pulsed light for treating the waterborne enteroparasite Giardia lamblia. Garvey M; Stocca A; Rowan N Exp Parasitol; 2014 Sep; 144():6-13. PubMed ID: 24929148 [TBL] [Abstract][Full Text] [Related]
17. Immunofluorescent detection of both Giardia lamblia and Cryptosporidium parvum using anti-Cryptosporidium oocyst antibodies. El-Shewy KA; El-Hamshary EM J Egypt Soc Parasitol; 1999; 29(3):777-86. PubMed ID: 12561917 [TBL] [Abstract][Full Text] [Related]
18. [Cryptosporidium parvum and Giardia lamblia--incidence in surface and drinking water--significance and detection]. Wagner C; Kimmig P Gesundheitswesen; 1992 Nov; 54(11):662-5. PubMed ID: 1286249 [TBL] [Abstract][Full Text] [Related]
19. Comparison of primers and optimization of PCR conditions for detection of Cryptosporidium parvum and Giardia lamblia in water. Rochelle PA; De Leon R; Stewart MH; Wolfe RL Appl Environ Microbiol; 1997 Jan; 63(1):106-14. PubMed ID: 8979344 [TBL] [Abstract][Full Text] [Related]
20. Imaging and identification of waterborne parasites using a chip-scale microscope. Lee SA; Erath J; Zheng G; Ou X; Willems P; Eichinger D; Rodriguez A; Yang C PLoS One; 2014; 9(2):e89712. PubMed ID: 24586978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]