These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 20694272)
1. Terephthalate as a probe for photochemically generated hydroxyl radical. Page SE; Arnold WA; McNeill K J Environ Monit; 2010 Sep; 12(9):1658-65. PubMed ID: 20694272 [TBL] [Abstract][Full Text] [Related]
2. Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. Page SE; Arnold WA; McNeill K Environ Sci Technol; 2011 Apr; 45(7):2818-25. PubMed ID: 21375262 [TBL] [Abstract][Full Text] [Related]
3. The impact of the hydroxyl radical photochemical sources on the rivastigmine drug transformation in mimic and natural waters. Passananti M; Temussi F; Iesce MR; Mailhot G; Brigante M Water Res; 2013 Sep; 47(14):5422-30. PubMed ID: 23863380 [TBL] [Abstract][Full Text] [Related]
4. Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters. Page SE; Logan JR; Cory RM; McNeill K Environ Sci Process Impacts; 2014 Apr; 16(4):807-22. PubMed ID: 24556650 [TBL] [Abstract][Full Text] [Related]
5. Photochemical fate of atorvastatin (lipitor) in simulated natural waters. Razavi B; Ben Abdelmelek S; Song W; O'Shea KE; Cooper WJ Water Res; 2011 Jan; 45(2):625-31. PubMed ID: 20801479 [TBL] [Abstract][Full Text] [Related]
6. Modeling phototransformation reactions in surface water bodies: 2,4-dichloro-6-nitrophenol as a case study. Maddigapu PR; Minella M; Vione D; Maurino V; Minero C Environ Sci Technol; 2011 Jan; 45(1):209-14. PubMed ID: 20822131 [TBL] [Abstract][Full Text] [Related]
7. Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. Xu H; Cooper WJ; Jung J; Song W Water Res; 2011 Jan; 45(2):632-8. PubMed ID: 20813393 [TBL] [Abstract][Full Text] [Related]
8. Assessing the occurrence of the dibromide radical (Br₂⁻•) in natural waters: measures of triplet-sensitised formation, reactivity, and modelling. De Laurentiis E; Minella M; Maurino V; Minero C; Mailhot G; Sarakha M; Brigante M; Vione D Sci Total Environ; 2012 Nov; 439():299-306. PubMed ID: 23085471 [TBL] [Abstract][Full Text] [Related]
9. Photochemical acetochlor degradation induced by hydroxyl radical in Fe-amended wetland waters: Impact of pH and dissolved organic matter. Yuan C; Chin YP; Weavers LK Water Res; 2018 Apr; 132():52-60. PubMed ID: 29306699 [TBL] [Abstract][Full Text] [Related]
10. Photochemical transformation of terbutaline (pharmaceutical) in simulated natural waters: degradation kinetics and mechanisms. Yang W; Ben Abdelmelek S; Zheng Z; An T; Zhang D; Song W Water Res; 2013 Nov; 47(17):6558-65. PubMed ID: 24053937 [TBL] [Abstract][Full Text] [Related]
11. A model approach to assess the long-term trends of indirect photochemistry in lake water. The case of Lake Maggiore (NW Italy). Minella M; Rogora M; Vione D; Maurino V; Minero C Sci Total Environ; 2011 Aug; 409(18):3463-71. PubMed ID: 21700321 [TBL] [Abstract][Full Text] [Related]
12. Trimethoprim: kinetic and mechanistic considerations in photochemical environmental fate and AOP treatment. Luo X; Zheng Z; Greaves J; Cooper WJ; Song W Water Res; 2012 Mar; 46(4):1327-36. PubMed ID: 22244271 [TBL] [Abstract][Full Text] [Related]
13. Determination of o-phthalic acid in snow and its photochemical degradation by capillary gas chromatography coupled with flame ionization and mass spectrometric detection. Zuo Y; Zhang K; Wu J; Men B; He M Chemosphere; 2011 May; 83(7):1014-9. PubMed ID: 21376367 [TBL] [Abstract][Full Text] [Related]
14. Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions. Yang X; Zhan MJ; Kong LR; Wang LS J Environ Sci (China); 2004; 16(4):687-9. PubMed ID: 15495982 [TBL] [Abstract][Full Text] [Related]
15. Modelling the photochemical attenuation pathways of the fibrate drug gemfibrozil in surface waters. Fabbri D; Maurino V; Minella M; Minero C; Vione D Chemosphere; 2017 Mar; 170():124-133. PubMed ID: 27987461 [TBL] [Abstract][Full Text] [Related]
16. Kinetic and analytical study of the photo-induced degradation of monuron by nitrates and nitrites under irradiation or in the dark. Boucheloukh H; Sehili T; Kouachi N; Djebbar K Photochem Photobiol Sci; 2012 Aug; 11(8):1339-45. PubMed ID: 22659944 [TBL] [Abstract][Full Text] [Related]
17. Hydroxyl radical (OH) scavenging in young and mature landfill leachates. Ghazi NM; Lastra AA; Watts MJ Water Res; 2014 Jun; 56():148-55. PubMed ID: 24675270 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyl radical quantum yields from isopropyl nitrite photolysis in air. Raff JD; Finlayson-Pitts BJ Environ Sci Technol; 2010 Nov; 44(21):8150-5. PubMed ID: 20879762 [TBL] [Abstract][Full Text] [Related]
19. Photochemical behavior of carbon nanotubes in natural waters: reactive oxygen species production and effects on •OH generation by Suwannee River fulvic acid, nitrate, and Fe (III). Zhou L; Zhang Y; Wang Q; Ferronato C; Yang X; Chovelon JM Environ Sci Pollut Res Int; 2016 Oct; 23(19):19520-8. PubMed ID: 27388595 [TBL] [Abstract][Full Text] [Related]
20. Photochemical formation of hydroxyl radical from effluent organic matter. Dong MM; Rosario-Ortiz FL Environ Sci Technol; 2012 Apr; 46(7):3788-94. PubMed ID: 22352464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]