These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20694506)

  • 41. Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress.
    Babula-Skowrońska D; Ludwików A; Cieśla A; Olejnik A; Cegielska-Taras T; Bartkowiak-Broda I; Sadowski J
    Plant Mol Biol; 2015 Jul; 88(4-5):445-57. PubMed ID: 26059040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide mining and comparative analysis of fatty acid elongase gene family in Brassica napus and its progenitors.
    Xue Y; Jiang J; Yang X; Jiang H; Du Y; Liu X; Xie R; Chai Y
    Gene; 2020 Jul; 747():144674. PubMed ID: 32304781
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative transcriptome profiling of two Brassica napus cultivars under chromium toxicity and its alleviation by reduced glutathione.
    Gill RA; Ali B; Cui P; Shen E; Farooq MA; Islam F; Ali S; Mao B; Zhou W
    BMC Genomics; 2016 Nov; 17(1):885. PubMed ID: 27821044
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments.
    Yang B; Jiang Y; Rahman MH; Deyholos MK; Kav NN
    BMC Plant Biol; 2009 Jun; 9():68. PubMed ID: 19493335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-Wide Survey and Expression Analysis of the KT/HAK/KUP Family in
    Zhou J; Zhou HJ; Chen P; Zhang LL; Zhu JT; Li PF; Yang J; Ke YZ; Zhou YH; Li JN; Du H
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322211
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Can Selenium and Molybdenum Restrain Cadmium Toxicity to Pollen Grains in
    Ismael MA; Elyamine AM; Zhao YY; Moussa MG; Rana MS; Afzal J; Imran M; Zhao XH; Hu CX
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042365
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome-Wide Dissection of the
    Wang S; Zhang H; Shi L; Xu F; Ding G
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32455955
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physiological and iTRAQ-Based Quantitative Proteomics Analysis of Methyl Jasmonate-Induced Tolerance in Brassica napus Under Arsenic Stress.
    Farooq MA; Zhang K; Islam F; Wang J; Athar HUR; Nawaz A; Ullah Zafar Z; Xu J; Zhou W
    Proteomics; 2018 May; 18(10):e1700290. PubMed ID: 29528557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcription factor BnaA9.WRKY47 contributes to the adaptation of Brassica napus to low boron stress by up-regulating the boric acid channel gene BnaA3.NIP5;1.
    Feng Y; Cui R; Wang S; He M; Hua Y; Shi L; Ye X; Xu F
    Plant Biotechnol J; 2020 May; 18(5):1241-1254. PubMed ID: 31705705
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptome Profile Analysis of Winter Rapeseed (
    Pu Y; Liu L; Wu J; Zhao Y; Bai J; Ma L; Yue J; Jin J; Niu Z; Fang Y; Sun W
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31195741
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress.
    Feigl G; Lehotai N; Molnár Á; Ördög A; Rodríguez-Ruiz M; Palma JM; Corpas FJ; Erdei L; Kolbert Z
    Ann Bot; 2015 Sep; 116(4):613-25. PubMed ID: 25538112
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcriptomic analysis reveals the mechanism of thermosensitive genic male sterility (TGMS) of Brassica napus under the high temperature inducement.
    Tang X; Hao YJ; Lu JX; Lu G; Zhang T
    BMC Genomics; 2019 Aug; 20(1):644. PubMed ID: 31409283
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus.
    Li Y; Wang X; Zhang H; Wang S; Ye X; Shi L; Xu F; Ding G
    PLoS One; 2019; 14(7):e0220374. PubMed ID: 31344115
    [TBL] [Abstract][Full Text] [Related]  

  • 55. BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus.
    Ying L; Chen H; Cai W
    Plant Physiol Biochem; 2014 Jun; 79():77-87. PubMed ID: 24690671
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L.
    He X; Kang Y; Li W; Liu W; Xie P; Liao L; Huang L; Yao M; Qian L; Liu Z; Guan C; Guan M; Hua W
    BMC Genomics; 2020 Oct; 21(1):736. PubMed ID: 33092535
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.
    Ali B; Gill RA; Yang S; Gill MB; Farooq MA; Liu D; Daud MK; Ali S; Zhou W
    PLoS One; 2015; 10(4):e0123328. PubMed ID: 25909456
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals.
    Koeslin-Findeklee F; Becker MA; van der Graaff E; Roitsch T; Horst WJ
    J Exp Bot; 2015 Jul; 66(13):3669-81. PubMed ID: 25944925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes.
    Yao Y; Sun H; Xu F; Zhang X; Liu S
    Planta; 2011 Mar; 233(3):523-37. PubMed ID: 21110039
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptome profiling of Brassica napus stem sections in relation to differences in lignin content.
    Hossain Z; Pillai BV; Gruber MY; Yu M; Amyot L; Hannoufa A
    BMC Genomics; 2018 Apr; 19(1):255. PubMed ID: 29661131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.