These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20694664)

  • 1. Coupling of dephosphorylation and nuclear export of Smads in TGF-beta signaling.
    Dai F; Duan X; Liang YY; Lin X; Feng XH
    Methods Mol Biol; 2010; 647():125-37. PubMed ID: 20694664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PPM1A dephosphorylates RanBP3 to enable efficient nuclear export of Smad2 and Smad3.
    Dai F; Shen T; Li Z; Lin X; Feng XH
    EMBO Rep; 2011 Oct; 12(11):1175-81. PubMed ID: 21960005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads.
    Schmierer B; Hill CS
    Mol Cell Biol; 2005 Nov; 25(22):9845-58. PubMed ID: 16260601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling.
    Dai F; Lin X; Chang C; Feng XH
    Dev Cell; 2009 Mar; 16(3):345-57. PubMed ID: 19289081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleocytoplasmic shuttling of Smad proteins.
    Hill CS
    Cell Res; 2009 Jan; 19(1):36-46. PubMed ID: 19114992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling.
    Lin X; Duan X; Liang YY; Su Y; Wrighton KH; Long J; Hu M; Davis CM; Wang J; Brunicardi FC; Shi Y; Chen YG; Meng A; Feng XH
    Cell; 2006 Jun; 125(5):915-28. PubMed ID: 16751101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of ligand-dependent nuclear accumulation of Smads in TGF-beta signaling.
    Chapnick DA; Liu X
    Methods Mol Biol; 2010; 647():95-111. PubMed ID: 20694662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.
    Pierreux CE; Nicolás FJ; Hill CS
    Mol Cell Biol; 2000 Dec; 20(23):9041-54. PubMed ID: 11074002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway.
    Bu S; Kapanadze B; Hsu T; Trojanowska M
    J Biol Chem; 2008 Jul; 283(28):19593-602. PubMed ID: 18482992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Termination of TGF-beta superfamily signaling through SMAD dephosphorylation--a functional genomic view.
    Lin X; Chen Y; Meng A; Feng X
    J Genet Genomics; 2007 Jan; 34(1):1-9. PubMed ID: 17469772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling.
    Wrighton KH; Willis D; Long J; Liu F; Lin X; Feng XH
    J Biol Chem; 2006 Dec; 281(50):38365-75. PubMed ID: 17035229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal transduction of the TGF-beta superfamily by Smad proteins.
    Kawabata M; Miyazono K
    J Biochem; 1999 Jan; 125(1):9-16. PubMed ID: 9880789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of internalization in transforming growth factor beta1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells.
    Runyan CE; Schnaper HW; Poncelet AC
    J Biol Chem; 2005 Mar; 280(9):8300-8. PubMed ID: 15613484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel nuclear export signal in Smad1 is essential for its signaling activity.
    Xiao Z; Brownawell AM; Macara IG; Lodish HF
    J Biol Chem; 2003 Sep; 278(36):34245-52. PubMed ID: 12821673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Murine protein serine/threonine kinase 38 stimulates TGF-beta signaling in a kinase-dependent manner via direct phosphorylation of Smad proteins.
    Seong HA; Jung H; Ha H
    J Biol Chem; 2010 Oct; 285(40):30959-70. PubMed ID: 20659902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth.
    Daly AC; Randall RA; Hill CS
    Mol Cell Biol; 2008 Nov; 28(22):6889-902. PubMed ID: 18794361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Smad nucleocytoplasmic shuttling in living cells.
    Nicolás FJ; De Bosscher K; Schmierer B; Hill CS
    J Cell Sci; 2004 Aug; 117(Pt 18):4113-25. PubMed ID: 15280432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of a Smad2 homologue from Schistosoma mansoni, a transforming growth factor-beta signal transducer.
    Osman A; Niles EG; LoVerde PT
    J Biol Chem; 2001 Mar; 276(13):10072-82. PubMed ID: 11152451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor.
    Kuratomi G; Komuro A; Goto K; Shinozaki M; Miyazawa K; Miyazono K; Imamura T
    Biochem J; 2005 Mar; 386(Pt 3):461-70. PubMed ID: 15496141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1).
    Komuro A; Imamura T; Saitoh M; Yoshida Y; Yamori T; Miyazono K; Miyazawa K
    Oncogene; 2004 Sep; 23(41):6914-23. PubMed ID: 15221015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.