BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20694836)

  • 1. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion.
    Engates KE; Shipley HJ
    Environ Sci Pollut Res Int; 2011 Mar; 18(3):386-95. PubMed ID: 20694836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion.
    Shipley HJ; Engates KE; Grover VA
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1727-36. PubMed ID: 22645012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline.
    Jiang K; Sun TH; Sun LN; Li HB
    J Environ Sci (China); 2006; 18(6):1221-5. PubMed ID: 17294969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar.
    Xu X; Cao X; Zhao L; Wang H; Yu H; Gao B
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):358-68. PubMed ID: 22477163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.
    Wang HY; Gao HW
    Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of Cr, Pb, Cu, Zn, Cd, Ni, and Co to nano-TiO
    Bożena G; Zakrzewska D; Szymczycha B
    Water Sci Technol; 2018 Jan; 77(1-2):145-158. PubMed ID: 29339613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.
    Sounthararajah DP; Loganathan P; Kandasamy J; Vigneswaran S
    J Hazard Mater; 2015 Apr; 287():306-16. PubMed ID: 25668299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-solid crosslinking of carboxymethyl cellulose nanolayer on titanium oxide nanoparticles as a novel biocomposite for efficient removal of toxic heavy metals from water.
    Mahmoud ME; Abdou AEH; Sobhy ME; Fekry NA
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):1269-1278. PubMed ID: 28757423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of biosynthesized silica-supported iron oxide nanocomposites for the adsorptive removal of heavy metal ions from aqueous solutions.
    Garg R; Garg R; Khan MA; Bansal M; Garg VK
    Environ Sci Pollut Res Int; 2023 Jul; 30(34):81319-81332. PubMed ID: 35672639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and desorption of bivalent metals to hematite nanoparticles.
    Grover VA; Hu J; Engates KE; Shipley HJ
    Environ Toxicol Chem; 2012 Jan; 31(1):86-92. PubMed ID: 21994178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Sci Total Environ; 2016 Oct; 566-567():76-85. PubMed ID: 27213673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural seaweed waste as sorbent for heavy metal removal from solution.
    Ahmady-Asbchin S; Andres Y; Gerente C; Le Cloirec P
    Environ Technol; 2009 Jun; 30(7):755-62. PubMed ID: 19705613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of spent TiO2 nanoparticles for Pb (II), Cu (II), and Zn (II) removal.
    Hu J; Shipley HJ
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5125-37. PubMed ID: 23354619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash.
    Nguyen TC; Loganathan P; Nguyen TV; Kandasamy J; Naidu R; Vigneswaran S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20430-20438. PubMed ID: 28707235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium.
    Sen Gupta S; Bhattacharyya KG
    J Environ Manage; 2008 Apr; 87(1):46-58. PubMed ID: 17499423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution.
    Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O
    Water Res; 2006 Jul; 40(12):2295-302. PubMed ID: 16766011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone.
    Aziz HA; Adlan MN; Ariffin KS
    Bioresour Technol; 2008 Apr; 99(6):1578-83. PubMed ID: 17540556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient removal of Cd(II), Cu(II), Pb(II), and Zn(II) from wastewater and natural water using submersible device.
    Smolyakov BS; Sagidullin AK; Romanov RE; Yermolaeva NI
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6368-6377. PubMed ID: 30617877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit.
    Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H
    Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent.
    Warner CL; Chouyyok W; Mackie KE; Neiner D; Saraf LV; Droubay TC; Warner MG; Addleman RS
    Langmuir; 2012 Feb; 28(8):3931-7. PubMed ID: 22329500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.