BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 20694844)

  • 1. Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells.
    Finka A; Mattoo RU; Goloubinoff P
    Cell Stress Chaperones; 2011 Jan; 16(1):15-31. PubMed ID: 20694844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The heat-shock protein/chaperone network and multiple stress resistance.
    Jacob P; Hirt H; Bendahmane A
    Plant Biotechnol J; 2017 Apr; 15(4):405-414. PubMed ID: 27860233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and expression analysis of heat shock protein family genes of gall fly (Procecidochares utilis) under temperature stress.
    Liang C; Li L; Zhao H; Lan M; Tang Y; Zhang M; Qin D; Wu G; Gao X
    Cell Stress Chaperones; 2023 May; 28(3):303-320. PubMed ID: 37071342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis.
    Fragkostefanakis S; Simm S; Paul P; Bublak D; Scharf KD; Schleiff E
    Plant Cell Environ; 2015 Apr; 38(4):693-709. PubMed ID: 25124075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways.
    Swindell WR; Huebner M; Weber AP
    BMC Genomics; 2007 May; 8():125. PubMed ID: 17519032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The heat shock response and chaperones/heat shock proteins in brain tumors: surface expression, release, and possible immune consequences.
    Graner MW; Cumming RI; Bigner DD
    J Neurosci; 2007 Oct; 27(42):11214-27. PubMed ID: 17942716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfection and Thermotolerance Methods for Analysis of miR-570 Targeting the HSP Chaperone Network.
    Okusha Y; Calderwood SK
    Methods Mol Biol; 2023; 2693():73-79. PubMed ID: 37540427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AtBAG7, an Arabidopsis Bcl-2-associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response.
    Williams B; Kabbage M; Britt R; Dickman MB
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6088-93. PubMed ID: 20231441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.
    Fragkostefanakis S; Röth S; Schleiff E; Scharf KD
    Plant Cell Environ; 2015 Sep; 38(9):1881-95. PubMed ID: 24995670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells.
    Tsutsumi S; Namba T; Tanaka KI; Arai Y; Ishihara T; Aburaya M; Mima S; Hoshino T; Mizushima T
    Oncogene; 2006 Feb; 25(7):1018-29. PubMed ID: 16205636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducers and co-inducers of molecular chaperones.
    Ohtsuka K; Kawashima D; Gu Y; Saito K
    Int J Hyperthermia; 2005 Dec; 21(8):703-11. PubMed ID: 16338852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-shock proteins and molecular chaperones: implications for pathogenesis, diagnostics, and therapeutics.
    Macario AJ
    Int J Clin Lab Res; 1995; 25(2):59-70. PubMed ID: 7663007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion of the C. elegans NAC engages the unfolded protein response, resulting in increased chaperone expression and apoptosis.
    Arsenovic PT; Maldonado AT; Colleluori VD; Bloss TA
    PLoS One; 2012; 7(9):e44038. PubMed ID: 22957041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis of Cd-treated switchgrass root revealed novel transcripts and the importance of HSF/HSP network in switchgrass Cd tolerance.
    Song G; Yuan S; Wen X; Xie Z; Lou L; Hu B; Cai Q; Xu B
    Plant Cell Rep; 2018 Nov; 37(11):1485-1497. PubMed ID: 30003312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis.
    Guan Q; Lu X; Zeng H; Zhang Y; Zhu J
    Plant J; 2013 Jun; 74(5):840-51. PubMed ID: 23480361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis.
    Finka A; Goloubinoff P
    Cell Stress Chaperones; 2013 Sep; 18(5):591-605. PubMed ID: 23430704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones.
    Zhang Y; Huang L; Zhang J; Moskophidis D; Mivechi NF
    J Cell Biochem; 2002; 86(2):376-93. PubMed ID: 12112007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The shock of aging: molecular chaperones and the heat shock response in longevity and aging--a mini-review.
    Calderwood SK; Murshid A; Prince T
    Gerontology; 2009; 55(5):550-8. PubMed ID: 19546513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation and recovery of functions of Saccharomyces cerevisiae chaperone BiP/Kar2p after thermal insult.
    Seppä L; Makarow M
    Eukaryot Cell; 2005 Dec; 4(12):2008-16. PubMed ID: 16339719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional differences of cytosolic 90-kDa heat-shock proteins (Hsp90s) in Arabidopsis thaliana.
    Cha JY; Ahn G; Kim JY; Kang SB; Kim MR; Su'udi M; Kim WY; Son D
    Plant Physiol Biochem; 2013 Sep; 70():368-73. PubMed ID: 23827697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.