These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 20694983)
1. Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture. Lampe KJ; Mooney RG; Bjugstad KB; Mahoney MJ J Biomed Mater Res A; 2010 Sep; 94(4):1162-71. PubMed ID: 20694983 [TBL] [Abstract][Full Text] [Related]
2. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension. Namba RM; Cole AA; Bjugstad KB; Mahoney MJ Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891 [TBL] [Abstract][Full Text] [Related]
3. Contrasting effects of collagen and bFGF-2 on neural cell function in degradable synthetic PEG hydrogels. Mahoney MJ; Anseth KS J Biomed Mater Res A; 2007 May; 81(2):269-78. PubMed ID: 17120204 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Mahoney MJ; Anseth KS Biomaterials; 2006 Apr; 27(10):2265-74. PubMed ID: 16318872 [TBL] [Abstract][Full Text] [Related]
5. Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel. Cha C; Kim SY; Cao L; Kong H Biomaterials; 2010 Jun; 31(18):4864-71. PubMed ID: 20347136 [TBL] [Abstract][Full Text] [Related]
6. Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains. Cha C; Jeong JH; Shim J; Kong H Acta Biomater; 2011 Oct; 7(10):3719-28. PubMed ID: 21704737 [TBL] [Abstract][Full Text] [Related]
7. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Almany L; Seliktar D Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249 [TBL] [Abstract][Full Text] [Related]
8. Hepatocyte viability and protein expression within hydrogel microstructures. Itle LJ; Koh WG; Pishko MV Biotechnol Prog; 2005; 21(3):926-32. PubMed ID: 15932275 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture. Frampton JP; Hynd MR; Shuler ML; Shain W Biomed Mater; 2011 Feb; 6(1):015002. PubMed ID: 21205998 [TBL] [Abstract][Full Text] [Related]
10. Biocompatibility of poly(ethylene glycol)-based hydrogels in the brain: an analysis of the glial response across space and time. Bjugstad KB; Lampe K; Kern DS; Mahoney M J Biomed Mater Res A; 2010 Oct; 95(1):79-91. PubMed ID: 20740603 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function. Subramani K; Birch MA Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396 [TBL] [Abstract][Full Text] [Related]
12. Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Hwang NS; Kim MS; Sampattavanich S; Baek JH; Zhang Z; Elisseeff J Stem Cells; 2006 Feb; 24(2):284-91. PubMed ID: 16109760 [TBL] [Abstract][Full Text] [Related]
13. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. DeLong SA; Moon JJ; West JL Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817 [TBL] [Abstract][Full Text] [Related]
14. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Brink KS; Yang PJ; Temenoff JS Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068 [TBL] [Abstract][Full Text] [Related]
15. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Bott K; Upton Z; Schrobback K; Ehrbar M; Hubbell JA; Lutolf MP; Rizzi SC Biomaterials; 2010 Nov; 31(32):8454-64. PubMed ID: 20684983 [TBL] [Abstract][Full Text] [Related]
16. Nanostructuring PEG-fibrinogen hydrogels to control cellular morphogenesis. Frisman I; Seliktar D; Bianco-Peled H Biomaterials; 2011 Nov; 32(31):7839-46. PubMed ID: 21784517 [TBL] [Abstract][Full Text] [Related]
17. The role of matrix metalloproteinases in regulating neuronal and nonneuronal cell invasion into PEGylated fibrinogen hydrogels. Sarig-Nadir O; Seliktar D Biomaterials; 2010 Sep; 31(25):6411-6. PubMed ID: 20537384 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the reliability and throughput of neurosphere culture on hydrogel microwell arrays. Cordey M; Limacher M; Kobel S; Taylor V; Lutolf MP Stem Cells; 2008 Oct; 26(10):2586-94. PubMed ID: 18669905 [TBL] [Abstract][Full Text] [Related]
19. Assessment of hepatocellular function within PEG hydrogels. Underhill GH; Chen AA; Albrecht DR; Bhatia SN Biomaterials; 2007 Jan; 28(2):256-70. PubMed ID: 16979755 [TBL] [Abstract][Full Text] [Related]
20. Impact of degradable macromer content in a poly(ethylene glycol) hydrogel on neural cell metabolic activity, redox state, proliferation, and differentiation. Lampe KJ; Bjugstad KB; Mahoney MJ Tissue Eng Part A; 2010 Jun; 16(6):1857-66. PubMed ID: 20067398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]