These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 20694983)
21. Photopolymerized poly(ethylene glycol)/poly(L-lysine) hydrogels for the delivery of neural progenitor cells. Royce Hynes S; McGregor LM; Ford Rauch M; Lavik EB J Biomater Sci Polym Ed; 2007; 18(8):1017-30. PubMed ID: 17705996 [TBL] [Abstract][Full Text] [Related]
22. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Wang LS; Chung JE; Chan PP; Kurisawa M Biomaterials; 2010 Feb; 31(6):1148-57. PubMed ID: 19892395 [TBL] [Abstract][Full Text] [Related]
23. Polylysine-modified PEG-based hydrogels to enhance the neuro-electrode interface. Rao SS; Han N; Winter JO J Biomater Sci Polym Ed; 2011; 22(4-6):611-25. PubMed ID: 20566048 [TBL] [Abstract][Full Text] [Related]
24. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Seidlits SK; Khaing ZZ; Petersen RR; Nickels JD; Vanscoy JE; Shear JB; Schmidt CE Biomaterials; 2010 May; 31(14):3930-40. PubMed ID: 20171731 [TBL] [Abstract][Full Text] [Related]
25. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks. Hudalla GA; Eng TS; Murphy WL Biomacromolecules; 2008 Mar; 9(3):842-9. PubMed ID: 18288800 [TBL] [Abstract][Full Text] [Related]
26. Development of a biostable replacement for PEGDA hydrogels. Browning MB; Cosgriff-Hernandez E Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325 [TBL] [Abstract][Full Text] [Related]
28. A simple cell patterning method using magnetic particle-containing photosensitive poly (ethylene glycol) hydrogel blocks: a technical note. Fu CY; Lin CY; Chu WC; Chang HY Tissue Eng Part C Methods; 2011 Aug; 17(8):871-7. PubMed ID: 21486199 [TBL] [Abstract][Full Text] [Related]
29. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics. Rizzi SC; Ehrbar M; Halstenberg S; Raeber GP; Schmoekel HG; Hagenmüller H; Müller R; Weber FE; Hubbell JA Biomacromolecules; 2006 Nov; 7(11):3019-29. PubMed ID: 17096527 [TBL] [Abstract][Full Text] [Related]
30. Multilayer microfluidic PEGDA hydrogels. Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685 [TBL] [Abstract][Full Text] [Related]
31. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. He X; Jabbari E Biomacromolecules; 2007 Mar; 8(3):780-92. PubMed ID: 17295540 [TBL] [Abstract][Full Text] [Related]
32. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. Park J; Lim E; Back S; Na H; Park Y; Sun K J Biomed Mater Res A; 2010 Jun; 93(3):1091-9. PubMed ID: 19768787 [TBL] [Abstract][Full Text] [Related]
33. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks. Kutty JK; Cho E; Soo Lee J; Vyavahare NR; Webb K Biomaterials; 2007 Nov; 28(33):4928-38. PubMed ID: 17720239 [TBL] [Abstract][Full Text] [Related]
34. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. Park JS; Woo DG; Sun BK; Chung HM; Im SJ; Choi YM; Park K; Huh KM; Park KH J Control Release; 2007 Dec; 124(1-2):51-9. PubMed ID: 17904679 [TBL] [Abstract][Full Text] [Related]
35. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Liu SQ; Tian Q; Hedrick JL; Po Hui JH; Ee PL; Yang YY Biomaterials; 2010 Oct; 31(28):7298-307. PubMed ID: 20615545 [TBL] [Abstract][Full Text] [Related]
36. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics. Gaharwar AK; Rivera C; Wu CJ; Chan BK; Schmidt G Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1800-7. PubMed ID: 23827639 [TBL] [Abstract][Full Text] [Related]
37. Three-dimensional bioprinting of rat embryonic neural cells. Lee W; Pinckney J; Lee V; Lee JH; Fischer K; Polio S; Park JK; Yoo SS Neuroreport; 2009 May; 20(8):798-803. PubMed ID: 19369905 [TBL] [Abstract][Full Text] [Related]
38. Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. Lynn AD; Kyriakides TR; Bryant SJ J Biomed Mater Res A; 2010 Jun; 93(3):941-53. PubMed ID: 19708075 [TBL] [Abstract][Full Text] [Related]
39. Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel. Gong C; Shi S; Wang X; Wang Y; Fu S; Dong P; Chen L; Zhao X; Wei Y; Qian Z J Phys Chem B; 2009 Jul; 113(30):10183-8. PubMed ID: 19572675 [TBL] [Abstract][Full Text] [Related]
40. Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures. Kim DH; Kim P; Song I; Cha JM; Lee SH; Kim B; Suh KY Langmuir; 2006 Jun; 22(12):5419-26. PubMed ID: 16732672 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]