These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 20694999)
1. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. Sisson K; Zhang C; Farach-Carson MC; Chase DB; Rabolt JF J Biomed Mater Res A; 2010 Sep; 94(4):1312-20. PubMed ID: 20694999 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Sisson K; Zhang C; Farach-Carson MC; Chase DB; Rabolt JF Biomacromolecules; 2009 Jul; 10(7):1675-80. PubMed ID: 19456101 [TBL] [Abstract][Full Text] [Related]
3. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW; Kim HE; Salih V Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549 [TBL] [Abstract][Full Text] [Related]
4. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Carlberg B; Axell MZ; Nannmark U; Liu J; Kuhn HG Biomed Mater; 2009 Aug; 4(4):045004. PubMed ID: 19567936 [TBL] [Abstract][Full Text] [Related]
5. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
6. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Soliman S; Pagliari S; Rinaldi A; Forte G; Fiaccavento R; Pagliari F; Franzese O; Minieri M; Di Nardo P; Licoccia S; Traversa E Acta Biomater; 2010 Apr; 6(4):1227-37. PubMed ID: 19887125 [TBL] [Abstract][Full Text] [Related]
7. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Gupta D; Venugopal J; Mitra S; Giri Dev VR; Ramakrishna S Biomaterials; 2009 Apr; 30(11):2085-94. PubMed ID: 19167752 [TBL] [Abstract][Full Text] [Related]
8. Scaffold mesh size affects the osteoblastic differentiation of seeded marrow stromal cells cultured in a flow perfusion bioreactor. Holtorf HL; Datta N; Jansen JA; Mikos AG J Biomed Mater Res A; 2005 Aug; 74(2):171-80. PubMed ID: 15965910 [TBL] [Abstract][Full Text] [Related]
9. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Moroni L; Licht R; de Boer J; de Wijn JR; van Blitterswijk CA Biomaterials; 2006 Oct; 27(28):4911-22. PubMed ID: 16762409 [TBL] [Abstract][Full Text] [Related]
10. Resorbable polymeric scaffolds for bone tissue engineering: the influence of their microstructure on the growth of human osteoblast-like MG 63 cells. Pamula E; Filová E; Bacáková L; Lisá V; Adamczyk D J Biomed Mater Res A; 2009 May; 89(2):432-43. PubMed ID: 18431773 [TBL] [Abstract][Full Text] [Related]
11. Effects of fiber orientation and diameter on the behavior of human dermal fibroblasts on electrospun PMMA scaffolds. Liu Y; Ji Y; Ghosh K; Clark RA; Huang L; Rafailovich MH J Biomed Mater Res A; 2009 Sep; 90(4):1092-106. PubMed ID: 18671267 [TBL] [Abstract][Full Text] [Related]
12. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite. Jaiswal AK; Chhabra H; Soni VP; Bellare JR Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2376-85. PubMed ID: 23498272 [TBL] [Abstract][Full Text] [Related]
13. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Shih YR; Chen CN; Tsai SW; Wang YJ; Lee OK Stem Cells; 2006 Nov; 24(11):2391-7. PubMed ID: 17071856 [TBL] [Abstract][Full Text] [Related]
14. Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. Casper CL; Yang W; Farach-Carson MC; Rabolt JF Biomacromolecules; 2007 Apr; 8(4):1116-23. PubMed ID: 17326680 [TBL] [Abstract][Full Text] [Related]
15. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. Soliman S; Sant S; Nichol JW; Khabiry M; Traversa E; Khademhosseini A J Biomed Mater Res A; 2011 Mar; 96(3):566-74. PubMed ID: 21254388 [TBL] [Abstract][Full Text] [Related]
16. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Wutticharoenmongkol P; Pavasant P; Supaphol P Biomacromolecules; 2007 Aug; 8(8):2602-10. PubMed ID: 17655356 [TBL] [Abstract][Full Text] [Related]
17. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. Salifu AA; Lekakou C; Labeed FH J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431 [TBL] [Abstract][Full Text] [Related]
18. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity. Lee J; Yoo JJ; Atala A; Lee SJ Acta Biomater; 2012 Jul; 8(7):2549-58. PubMed ID: 22465575 [TBL] [Abstract][Full Text] [Related]
19. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146 [TBL] [Abstract][Full Text] [Related]
20. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Telemeco TA; Ayres C; Bowlin GL; Wnek GE; Boland ED; Cohen N; Baumgarten CM; Mathews J; Simpson DG Acta Biomater; 2005 Jul; 1(4):377-85. PubMed ID: 16701819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]