These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20695543)

  • 1. Carbon nanotubes noncovalently functionalized by an organic-inorganic hybrid: new building blocks for constructing superhydrophobic conductive coatings.
    Peng M; Qi J; Zhou Z; Liao Z; Zhu Z; Guo H
    Langmuir; 2010 Aug; 26(16):13062-4. PubMed ID: 20695543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonaligned carbon nanotubes partially embedded in polymer matrixes: a novel route to superhydrophobic conductive surfaces.
    Peng M; Liao Z; Qi J; Zhou Z
    Langmuir; 2010 Aug; 26(16):13572-8. PubMed ID: 20695606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Percolation-dominated superhydrophobicity and conductivity for nanocomposite coatings from the mixtures of a commercial aqueous silica sol and functionalized carbon nanotubes.
    Peng M; Guo H; Liao Z; Qi J; Zhou Z; Fang Z; Shen L
    J Colloid Interface Sci; 2012 Feb; 367(1):225-33. PubMed ID: 22056263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facile approach for the fabrication of highly stable superhydrophobic cotton fabric with multi-walled carbon nanotubes-azide polymer composites.
    Li G; Wang H; Zheng H; Bai R
    Langmuir; 2010 May; 26(10):7529-34. PubMed ID: 20155981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent, conductive, and superhydrophobic nanocomposite coatings on polymer substrate.
    Yao W; Bae KJ; Jung MY; Cho YR
    J Colloid Interface Sci; 2017 Nov; 506():429-436. PubMed ID: 28750244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fluorination of carbon nanotubes on superhydrophobic properties of fluoro-based films.
    Meng LY; Park SJ
    J Colloid Interface Sci; 2010 Feb; 342(2):559-63. PubMed ID: 19919860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays.
    Li Y; Huang XJ; Heo SH; Li CC; Choi YK; Cai WP; Cho SO
    Langmuir; 2007 Feb; 23(4):2169-74. PubMed ID: 17279709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding.
    Das A; Hayvaci HT; Tiwari MK; Bayer IS; Erricolo D; Megaridis CM
    J Colloid Interface Sci; 2011 Jan; 353(1):311-5. PubMed ID: 20889160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles.
    Xu L; He J
    Langmuir; 2012 May; 28(19):7512-8. PubMed ID: 22533369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid.
    Wu T; Pan Y; Li L
    J Colloid Interface Sci; 2010 Aug; 348(1):265-70. PubMed ID: 20427047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent and durable superhydrophobic coatings for anti-bioadhesion.
    Zhao X; Yu B; Zhang J
    J Colloid Interface Sci; 2017 Sep; 501():222-230. PubMed ID: 28456106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Packing the silica colloidal crystal beads: a facile route to superhydrophobic surfaces.
    Sun C; Gu ZZ; Xu H
    Langmuir; 2009 Nov; 25(21):12439-43. PubMed ID: 19785469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Sol-Gel Superhydrophobic Coatings Based on Alkyl Silane-Modified Nanosilica.
    Heiman-Burstein D; Dotan A; Dodiuk H; Kenig S
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33673101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile preparation of superhydrophobic coatings by sol-gel processes.
    Taurino R; Fabbri E; Messori M; Pilati F; Pospiech D; Synytska A
    J Colloid Interface Sci; 2008 Sep; 325(1):149-56. PubMed ID: 18571661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles.
    Li X; Du X; He J
    Langmuir; 2010 Aug; 26(16):13528-34. PubMed ID: 20695600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobic surfaces formed using layer-by-layer self-assembly with aminated multiwall carbon nanotubes.
    Liao KS; Wan A; Batteas JD; Bergbreiter DE
    Langmuir; 2008 Apr; 24(8):4245-53. PubMed ID: 18324860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly transparent and durable superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane.
    Wang D; Zhang Z; Li Y; Xu C
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10014-21. PubMed ID: 24955659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids.
    Yildirim A; Khudiyev T; Daglar B; Budunoglu H; Okyay AK; Bayindir M
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):853-60. PubMed ID: 23281919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile fabrication of hierarchically structured silica coatings from hierarchically mesoporous silica nanoparticles and their excellent superhydrophilicity and superhydrophobicity.
    Du X; Li X; He J
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2365-72. PubMed ID: 20735109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin organically modified silica layer coated carbon nanotubes: fabrication, characterization and electrical insulating properties.
    Pumera M; Sasaki T; Smíd B
    Chem Asian J; 2009 May; 4(5):662-7. PubMed ID: 19263459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.