These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Supramolecular synthons in noncovalent synthesis of a class of gelators derived from simple organic salts: instant gelation of organic fluids at room temperature via in situ synthesis of the gelators. Das UK; Trivedi DR; Adarsh NN; Dastidar P J Org Chem; 2009 Sep; 74(18):7111-21. PubMed ID: 19678626 [TBL] [Abstract][Full Text] [Related]
7. Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. Hirst AR; Coates IA; Boucheteau TR; Miravet JF; Escuder B; Castelletto V; Hamley IW; Smith DK J Am Chem Soc; 2008 Jul; 130(28):9113-21. PubMed ID: 18558681 [TBL] [Abstract][Full Text] [Related]
8. Birefringent physical gels of N-(4-n-alkyloxybenzoyl)-L-alanine amphiphiles in organic solvents: the role of hydrogen-bonding. Patra T; Pal A; Dey J J Colloid Interface Sci; 2010 Apr; 344(1):10-20. PubMed ID: 20097349 [TBL] [Abstract][Full Text] [Related]
9. Novel organic gelators based on pentose derivatized diosgenyl saponins. Guo X; Xin G; He S; Wang Y; Huang B; Zhao H; Xing Z; Chen Q; Huang W; He Y Org Biomol Chem; 2013 Feb; 11(5):821-7. PubMed ID: 23233132 [TBL] [Abstract][Full Text] [Related]
11. A favorable, narrow, δ(h) Hansen-parameter domain for gelation of low-molecular-weight amino acid derivatives. Curcio P; Allix F; Pickaert G; Jamart-Grégoire B Chemistry; 2011 Nov; 17(48):13603-12. PubMed ID: 22025290 [TBL] [Abstract][Full Text] [Related]
12. Low-molecular-weight gelators based on N(alpha)-acetyl-N(epsilon)-dodecyl-L-lysine and their amphiphilic gelation properties. Suzuki M; Abe T; Hanabusa K J Colloid Interface Sci; 2010 Jan; 341(1):69-74. PubMed ID: 19846106 [TBL] [Abstract][Full Text] [Related]
13. Novel dimeric cholesteryl-based A(LS)2 low-molecular-mass gelators with a benzene ring in the linker. Xue M; Liu K; Peng J; Zhang Q; Fang Y J Colloid Interface Sci; 2008 Nov; 327(1):94-101. PubMed ID: 18774141 [TBL] [Abstract][Full Text] [Related]
14. Dipeptide-based low-molecular-weight efficient organogelators and their application in water purification. Debnath S; Shome A; Dutta S; Das PK Chemistry; 2008; 14(23):6870-81. PubMed ID: 18642259 [TBL] [Abstract][Full Text] [Related]
15. To gel or not to gel: correlating molecular gelation with solvent parameters. Lan Y; Corradini MG; Weiss RG; Raghavan SR; Rogers MA Chem Soc Rev; 2015 Oct; 44(17):6035-58. PubMed ID: 25941907 [TBL] [Abstract][Full Text] [Related]
16. Chiral bis(amino alcohol)oxalamide gelators-gelation properties and supramolecular organization: racemate versus pure enantiomer gelation. Makarević J; Jokić M; Raza Z; Stefanić Z; Kojić-Prodić B; Zinić M Chemistry; 2003 Nov; 9(22):5567-80. PubMed ID: 14639640 [TBL] [Abstract][Full Text] [Related]
17. Versatile supramolecular gelators that can harden water, organic solvents and ionic liquids. Minakuchi N; Hoe K; Yamaki D; Ten-no S; Nakashima K; Goto M; Mizuhata M; Maruyama T Langmuir; 2012 Jun; 28(25):9259-66. PubMed ID: 22650420 [TBL] [Abstract][Full Text] [Related]
18. A new class of low-molecular-weight amphiphilic gelators. Mohmeyer N; Schmidt HW Chemistry; 2005 Jan; 11(3):863-72. PubMed ID: 15593117 [TBL] [Abstract][Full Text] [Related]
19. Application of Solvent Parameters for Predicting Organogel Formation. Hu B; Sun W; Yang B; Li H; Zhou L; Li S AAPS PharmSciTech; 2018 Jul; 19(5):2288-2300. PubMed ID: 29845502 [TBL] [Abstract][Full Text] [Related]
20. New dicholesteryl-based gelators: chirality and spacer length effect. Peng J; Liu K; Liu J; Zhang Q; Feng X; Fang Y Langmuir; 2008 Apr; 24(7):2992-3000. PubMed ID: 18294019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]