These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20695570)

  • 1. Experimental and molecular simulation investigation of enhanced CO2 solubility in hybrid adsorbents.
    Ho NL; Porcheron F; Pellenq RJ
    Langmuir; 2010 Aug; 26(16):13287-96. PubMed ID: 20695570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced CO2 solubility in hybrid MCM-41: molecular simulations and experiments.
    Ho LN; Pellitero JP; Porcheron F; Pellenq RJ
    Langmuir; 2011 Jul; 27(13):8187-97. PubMed ID: 21639400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO(2) adsorption in the MIL-53 (Al) system.
    Ramsahye NA; Maurin G; Bourrelly S; Llewellyn P; Loiseau T; Ferey G
    Phys Chem Chem Phys; 2007 Mar; 9(9):1059-63. PubMed ID: 17311147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Structure of Adsorbed CO(2) in Slitlike Micropores at Low and High Temperature and the Resulting Micropore Size Distribution Based on GCMC Simulations.
    Samios S; Stubos AK; Papadopoulos GK; Kanellopoulos NK; Rigas F
    J Colloid Interface Sci; 2000 Apr; 224(2):272-290. PubMed ID: 10727338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Packing effects on argon and methanol adsorption inside graphitic cylindrical and slit pores: a GCMC simulation study.
    Liu Z; Horikawa T; Do DD; Nicholson D
    J Colloid Interface Sci; 2012 Feb; 368(1):474-87. PubMed ID: 22082798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boltzmann bias grand canonical Monte Carlo.
    Garberoglio G
    J Chem Phys; 2008 Apr; 128(13):134109. PubMed ID: 18397055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grand canonical monte carlo simulation study of methane adsorption at an open graphite surface and in slit-like carbon pores at 273 K.
    Kowalczyk P; Tanaka H; Kaneko K; Terzyk AP; Do DD
    Langmuir; 2005 Jun; 21(12):5639-46. PubMed ID: 15924500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of energy sites on adsorption of Lennard-Jones fluids and phase transition in carbon slit pore of finite length a computer simulation study.
    Wongkoblap A; Do DD
    J Colloid Interface Sci; 2006 May; 297(1):1-9. PubMed ID: 16297400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gibbs ensemble Monte Carlo simulation of supercritical CO2 adsorption on NaA and NaX zeolites.
    Liu S; Yang X
    J Chem Phys; 2006 Jun; 124(24):244705. PubMed ID: 16821994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption mechanism of carbon dioxide in faujasites: grand canonical monte carlo simulations and microcalorimetry measurements.
    Maurin G; Llewellyn PL; Bell RG
    J Phys Chem B; 2005 Aug; 109(33):16084-91. PubMed ID: 16853044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi one-dimensional nanopores in single-wall carbon nanohorn colloids using grand canonical Monte Carlo simulation aided adsorption technique.
    Ohba T; Kanoh H; Yudasaka M; Iijima S; Kaneko K
    J Phys Chem B; 2005 May; 109(18):8659-62. PubMed ID: 16852025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore size distribution analysis of selected hexagonal mesoporous silicas by grand canonical Monte Carlo simulations.
    Herdes C; Santos MA; Medina F; Vega LF
    Langmuir; 2005 Sep; 21(19):8733-42. PubMed ID: 16142955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas solubility in hydrophobic confinement.
    Luzar A; Bratko D
    J Phys Chem B; 2005 Dec; 109(47):22545-52. PubMed ID: 16853936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of carbon dioxide of 1-site and 3-site models in pillared clays: a Gibbs ensemble Monte Carlo simulation.
    Peng X; Zhao J; Cao D
    J Colloid Interface Sci; 2007 Jun; 310(2):391-401. PubMed ID: 17346728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulation study of the stepped behaviors of gas adsorption in two-dimensional covalent organic frameworks.
    Yang Q; Zhong C
    Langmuir; 2009 Feb; 25(4):2302-8. PubMed ID: 19199723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation and short time dynamics of bulk liquids and fluids confined in spherical cavities and slit pores.
    Krishnan SH; Ayappa KG
    J Phys Chem B; 2005 Dec; 109(49):23237-49. PubMed ID: 16375288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154707. PubMed ID: 19045218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system.
    Hansen N; Jakobtorweihen S; Keil FJ
    J Chem Phys; 2005 Apr; 122(16):164705. PubMed ID: 15945697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.