These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20695572)

  • 21. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets.
    Zahiri B; Sow PK; Kung CH; Mérida W
    J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity.
    Porcheron F; Monson PA
    Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spray-coated fluorine-free superhydrophobic coatings with easy repairability and applicability.
    Wu W; Wang X; Liu X; Zhou F
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1656-61. PubMed ID: 20355780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure.
    Ran C; Ding G; Liu W; Deng Y; Hou W
    Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface activity of solid particles with extremely rough surfaces.
    Nonomura Y; Komura S
    J Colloid Interface Sci; 2008 Jan; 317(2):501-6. PubMed ID: 17936775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superhydrophobicity of natural and artificial surfaces under controlled condensation conditions.
    Yin L; Zhu L; Wang Q; Ding J; Chen Q
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1254-60. PubMed ID: 21443252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beyond Wenzel and Cassie-Baxter: second-order effects on the wetting of rough surfaces.
    Hejazi V; Moghadam AD; Rohatgi P; Nosonovsky M
    Langmuir; 2014 Aug; 30(31):9423-9. PubMed ID: 25051526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of hydrophobic surfaces by coupling of Langmuir-Blodgett deposition and a self-assembled monolayer.
    Tsai PS; Yang YM; Lee YL
    Langmuir; 2006 Jun; 22(13):5660-5. PubMed ID: 16768491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond the lotus effect: roughness influences on wetting over a wide surface-energy range.
    Spori DM; Drobek T; Zürcher S; Ochsner M; Sprecher C; Mühlebach A; Spencer ND
    Langmuir; 2008 May; 24(10):5411-7. PubMed ID: 18442274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scaled interfacial activity of proteins at a hydrophobic solid/aqueous-buffer interface.
    Krishnan A; Liu YH; Cha P; Allara D; Vogler EA
    J Biomed Mater Res A; 2005 Nov; 75(2):445-57. PubMed ID: 16104049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of macroscale wetting equations on a microrough surface.
    Wang Y; Wang X; Du Z; Zhang C; Tian M; Mi J
    Langmuir; 2015 Mar; 31(8):2342-50. PubMed ID: 25654557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of additives found in industrial formulations of TCE on the wettability of sandstone.
    Harrold G; Lerner DN; Leharne SA
    J Contam Hydrol; 2005 Nov; 80(1-2):1-17. PubMed ID: 16099534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts.
    Wei J; Igarashi T; Okumori N; Igarashi T; Maetani T; Liu B; Yoshinari M
    Biomed Mater; 2009 Aug; 4(4):045002. PubMed ID: 19525576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles.
    Barbieri L; Wagner E; Hoffmann P
    Langmuir; 2007 Feb; 23(4):1723-34. PubMed ID: 17279650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Equilibrium contact angles of liquid droplets on ideal rough solids.
    Kang HC; Jacobi AM
    Langmuir; 2011 Dec; 27(24):14910-8. PubMed ID: 22053925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silicon surface structure-controlled oleophobicity.
    Liu Y; Xiu Y; Hess DW; Wong CP
    Langmuir; 2010 Jun; 26(11):8908-13. PubMed ID: 20205405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous tailoring of surface topography and chemical structure for controlled wettability.
    Takeshita N; Paradis LA; Oner D; McCarthy TJ; Chen W
    Langmuir; 2004 Sep; 20(19):8131-6. PubMed ID: 15350083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dynamic interaction of water with four dental impression materials during cure.
    Hosseinpour D; Berg JC
    J Prosthodont; 2009 Jun; 18(4):292-300. PubMed ID: 19210607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Condensation and wetting transitions on microstructured ultra-hydrophobic surfaces.
    Dorrer C; Rühe J
    Langmuir; 2007 Mar; 23(7):3820-4. PubMed ID: 17311432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size.
    Liu B; Lange FF
    J Colloid Interface Sci; 2006 Jun; 298(2):899-909. PubMed ID: 16480735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.