BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2069559)

  • 1. Conformational space of alpha 1-4 glycosidic linkage: a molecular dynamics study.
    Prabhakaran M
    Biochem Biophys Res Commun; 1991 Jul; 178(1):192-7. PubMed ID: 2069559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the conformational behaviour of permethylated cyclodextrins by molecular modelling.
    Reinhardt R; Richter M; Mager PP
    Carbohydr Res; 1996 Sep; 291():1-9. PubMed ID: 8864220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alpha-(1-->6) glycosidic linkage as a novel conformational entropic regulator in osmoregulated periplasmic alpha-cyclosophorohexadecaose.
    Choi Y; Jung S
    Carbohydr Res; 2005 Nov; 340(16):2550-7. PubMed ID: 16169537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling.
    Perić-Hassler L; Hansen HS; Baron R; Hünenberger PH
    Carbohydr Res; 2010 Aug; 345(12):1781-801. PubMed ID: 20576257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of 13C chemical shift surfaces in the study of carbohydrate conformation. Application to cyclomaltooligosaccharides (cyclodextrins) in the solid state and in solution.
    O'Brien EP; Moyna G
    Carbohydr Res; 2004 Jan; 339(1):87-96. PubMed ID: 14659674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose orientation and dynamics in alpha-, beta-, and gamma-cyclodextrins.
    Naidoo KJ; Gamieldien MR; Chen JY; Widmalm G; Maliniak A
    J Phys Chem B; 2008 Nov; 112(47):15151-7. PubMed ID: 18975890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular dynamics study of branched alpha-cyclodextrin.
    Amisaki T; Fujiwara T; Kobayashi S
    J Mol Graph; 1994 Dec; 12(4):297-301, 294. PubMed ID: 7696221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and modelling of the structures of beta-cyclodextrin complexes.
    Myles AM; Barlow DJ; France G; Lawrence MJ
    Biochim Biophys Acta; 1994 Jan; 1199(1):27-36. PubMed ID: 8280750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferred conformation of the glycosidic linkage of methyl-beta-mannose.
    Coskuner O
    J Chem Phys; 2007 Jul; 127(1):015101. PubMed ID: 17627368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosidic linkage conformation of methyl-alpha-mannopyranoside.
    Coskuner O; Bergeron DE; Rincon L; Hudgens JW; Gonzalez CA
    J Chem Phys; 2008 Jul; 129(4):045102. PubMed ID: 18681681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on the mobility of the glycosidic linkage in sucrose by study of the phase space structure of a two-degrees of freedom model.
    Longhi G; Malandrino M; Abbate S
    J Mol Graph Model; 2000 Apr; 18(2):153-62, 169-71. PubMed ID: 10994519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational differences between alpha-cyclodextrin in aqueous solution and in crystalline form. A molecular dynamics study.
    Koehler JE; Saenger W; van Gunsteren WF
    J Mol Biol; 1988 Sep; 203(1):241-50. PubMed ID: 3184189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and conformation analysis of beta-cyclodextrin complexes.
    Kostense AS; van Helden SP; Janssen LH
    J Comput Aided Mol Des; 1991 Dec; 5(6):525-43. PubMed ID: 1818089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of crystalline beta-cyclodextrin dodecahydrate at 293 K and 120 K.
    Koehler JE; Saenger W; van Gunsteren WF
    Eur Biophys J; 1987; 15(4):211-24. PubMed ID: 3428244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of a cyclic-beta-(1-->2) glucan containing an alpha-(1-->6) linkage as a 'molecular alleviator' for the macrocyclic conformational strain.
    Kim H; Jeong K; Cho KW; Paik SR; Jung S
    Carbohydr Res; 2006 Jun; 341(8):1011-9. PubMed ID: 16546149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ring inversion properties of 1→2, 1→3 and 1→6-linked hexopyranoses and their correlation with the conformation of glycosidic linkages.
    Plazinski W; Drach M; Plazinska A
    Carbohydr Res; 2016 Mar; 423():43-8. PubMed ID: 26878487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of cyclohenicosakis-[(1-->2)-beta-D-gluco-henicosapyranosyl], a cyclic (1-->2)-beta-D-glucan (a 'cyclosophoraose') of DP 21.
    Choi YH; Yang CH; Kim HW; Jung S
    Carbohydr Res; 2000 Jun; 326(3):227-34. PubMed ID: 10903031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of the 1:1 inclusion complex of beta-cyclodextrin with squaric acid.
    Crisma M; Fornasier R; Marcuzzi F
    Carbohydr Res; 2001 Jul; 333(2):145-51. PubMed ID: 11448675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical compressibility of the glycosylphosphatidylinositol (GPI) anchor backbone governed by independent glycosidic linkages.
    Wehle M; Vilotijevic I; Lipowsky R; Seeberger PH; Silva DV; Santer M
    J Am Chem Soc; 2012 Nov; 134(46):18964-72. PubMed ID: 23061547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of the hexopyranose ring geometry on the conformation of glycosidic linkages investigated using molecular dynamics simulations.
    Plazinski W; Drach M
    Carbohydr Res; 2015 Oct; 415():17-27. PubMed ID: 26279522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.